当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Liquid-induced topological transformations of cellular microstructures
Nature ( IF 50.5 ) Pub Date : 2021-04-14 , DOI: 10.1038/s41586-021-03404-7
Shucong Li 1 , Bolei Deng 2 , Alison Grinthal 2 , Alyssha Schneider-Yamamura 2 , Jinliang Kang 2 , Reese S Martens 2 , Cathy T Zhang 2 , Jian Li 2 , Siqin Yu 2 , Katia Bertoldi 2 , Joanna Aizenberg 1, 2
Affiliation  

The fundamental topology of cellular structures—the location, number and connectivity of nodes and compartments—can profoundly affect their acoustic1,2,3,4, electrical5, chemical6,7, mechanical8,9,10 and optical11 properties, as well as heat1,12, fluid13,14 and particle transport15. Approaches that harness swelling16,17,18, electromagnetic actuation19,20 and mechanical instabilities21,22,23 in cellular materials have enabled a variety of interesting wall deformations and compartment shape alterations, but the resulting structures generally preserve the defining connectivity features of the initial topology. Achieving topological transformation presents a distinct challenge for existing strategies: it requires complex reorganization, repacking, and coordinated bending, stretching and folding, particularly around each node, where elastic resistance is highest owing to connectivity. Here we introduce a two-tiered dynamic strategy that achieves systematic reversible transformations of the fundamental topology of cellular microstructures, which can be applied to a wide range of materials and geometries. Our approach requires only exposing the structure to a selected liquid that is able to first infiltrate and plasticize the material at the molecular scale, and then, upon evaporation, form a network of localized capillary forces at the architectural scale that ‘zip’ the edges of the softened lattice into a new topological structure, which subsequently restiffens and remains kinetically trapped. Reversibility is induced by applying a mixture of liquids that act separately at the molecular and architectural scales (thus offering modular temporal control over the softening–evaporation–stiffening sequence) to restore the original topology or provide access to intermediate modes. Guided by a generalized theoretical model that connects cellular geometries, material stiffness and capillary forces, we demonstrate programmed reversible topological transformations of various lattice geometries and responsive materials that undergo fast global or localized deformations. We then harness dynamic topologies to develop active surfaces with information encryption, selective particle trapping and bubble release, as well as tunable mechanical, chemical and acoustic properties.



中文翻译:

细胞微结构的液体诱导拓扑转变

细胞结构的基本拓扑结构——节点和隔室的位置、数量和连通性——可以深刻地影响它们的声学1,2,3,4,电学5,化学6,7,机械学8,9,10和光学11属性,以及热量1,12,流体13,14和粒子传输15。利用膨胀16、17、18、电磁驱动19、20和机械不稳定性21、22、23的方法在蜂窝材料中,已经实现了各种有趣的壁变形和隔室形状改变,但由此产生的结构通常保留了初始拓扑的定义连接特征。实现拓扑变换对现有策略提出了明显的挑战:它需要复杂的重组、重新包装和协调弯曲、拉伸和折叠,特别是在每个节点周围,由于连接性,弹性阻力最高。在这里,我们介绍了一种两层动态策略,该策略实现了细胞微结构基本拓扑结构的系统可逆变换,可应用于各种材料和几何形状。我们的方法只需要将结构暴露在选定的液体中,该液体能够首先在分子尺度上渗透和塑化材料,然后在蒸发时在建筑尺度上形成局部毛细力网络,“拉开”边缘软化的晶格变成了一个新的拓扑结构,随后又重新变硬并保持动力学捕获。可逆性是通过应用在分子和结构尺度上分别起作用的液体混合物来诱导的(从而提供对软化-蒸发-硬化序列的模块化时间控制)以恢复原始拓扑结构或提供对中间模式的访问。在连接细胞几何形状、材料刚度和毛细力的广义理论模型的指导下,我们展示了各种晶格几何形状和响应材料的程序可逆拓扑转换,这些材料经历了快速的全局或局部变形。然后,我们利用动态拓扑开发具有信息加密、选择性粒子捕获和气泡释放以及可调机械、化学和声学特性的活性表面。

更新日期:2021-04-14
down
wechat
bug