当前位置: X-MOL 学术SIAM J. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Communication Complexity of Set Intersection and Multiple Equality Testing
SIAM Journal on Computing ( IF 1.2 ) Pub Date : 2021-04-13 , DOI: 10.1137/20m1326040
Dawei Huang , Seth Pettie , Yixiang Zhang , Zhijun Zhang

SIAM Journal on Computing, Volume 50, Issue 2, Page 674-717, January 2021.
In this paper we explore fundamental problems in randomized communication complexity such as computing SetIntersection on sets of size $k$ and EqualityTesting between vectors of length $k$. Sağlam and Tardos [Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science, 2013, pp. 678--687] and Brody et al. [Algorithmica, 76 (2016), pp. 796--845] showed that for these types of problems, one can achieve optimal communication volume of $O(k)$ bits, with a randomized protocol that takes $O(\log^* k)$ rounds. They also proved that this is one point along the optimal round-communication trade-off curve. Aside from rounds and communication volume, there is a third parameter of interest, namely the error probability $p_{{err}}$, which we write $2^{-E}$. It is straightforward to show that protocols for SetIntersection or EqualityTesting need to send at least $\Omega(k + E)$ bits, regardless of the number of rounds. Is it possible to simultaneously achieve optimality in all three parameters, namely $O(k + E)$ communication and $O(\log^* k)$ rounds? In this paper we prove that there is no universally optimal algorithm, and we complement the existing round-communication trade-offs [M. Sağlam and G. Tardos, Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science, 2013, pp. 678--687; J. Brody et al., Algorithmica, 76 (2016), pp. 796--845] with a new trade-off between rounds, communication, and probability of error. In particular, any protocol for solving multiple EqualityTesting in $r$ rounds with failure probability $p_{{err}} = 2^{-E}$ has communication volume $\Omega(Ek^{1/r})$. We present several algorithms for multiple EqualityTesting (and its variants) that match or nearly match our lower bound and the lower bound of [M. Sağlam and G. Tardos, Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science, 2013, pp. 678--687; J. Brody et al., Algorithmica, 76 (2016), pp. 796--845]. Lower bounds on EqualityTesting extend to SetIntersection for every $r, k,$ and $p_{{err}}$ (which is trivial); in the reverse direction, we prove that upper bounds on EqualityTesting for $r, k, p_{{err}}$ imply similar upper bounds on SetIntersection with parameters $r+1, k,$ and $p_{{err}}$. Our original motivation for considering $p_{{err}}$ as an independent parameter came from the problem of enumerating triangles in distributed (${CONGEST}$) networks having maximum degree $\Delta$. We prove that this problem can be solved in $O(\Delta/\log n + \log\log \Delta)$ time with high probability $1-1/{poly}(n)$. This beats the trivial (deterministic) $O(\Delta)$-time algorithm and is superior to the $\tilde{O}(n^{1/3})$ algorithm of [Y. Chang, S. Pettie, and H. Zhang, Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, 2019, pp. 821--840; Y. Chang and T. Saranurak, Proceedings of the ACM Symposium on Principles of Distributed Computing, 2019, pp. 66--73] when $\Delta=\tilde{O}(n^{1/3})$.


中文翻译:

集合交集和多重相等测试的通信复杂度

SIAM Journal on Computing,第 50 卷,第 2 期,第 674-717 页,2021 年 1 月。
在本文中,我们探讨了随机通信复杂性中的基本问题,例如在大小为 $k$ 的集合上计算 SetIntersection 和长度为 $k$ 的向量之间的 EqualityTesting。Sağlam 和 Tardos [第 54 届 IEEE 计算机科学基础研讨会论文集,2013 年,第 678--687 页] 和 Brody 等人。[Algorithmica, 76 (2016), pp. 796--845] 表明,对于这些类型的问题,可以实现 $O(k)$ 位的最佳通信量,随机协议采用 $O(\log^ * k)$ 回合。他们还证明,这是最佳回合通信权衡曲线上的一点。除了轮次和通信量之外,还有第三个感兴趣的参数,即错误概率 $p_{{err}}$,我们将其写为 $2^{-E}$。可以直接证明 SetIntersection 或 EqualityTesting 的协议至少需要发送 $\Omega(k + E)$ 位,而不管轮数如何。是否有可能同时实现所有三个参数的最优性,即 $O(k + E)$ 通信和 $O(\log^* k)$ 轮次?在本文中,我们证明没有普遍最优的算法,并且我们补充了现有的回合通信权衡 [M. Sağlam 和 G. Tardos,第 54 届 IEEE 计算机科学基础研讨会论文集,2013 年,第 678--687 页;J. Brody 等人,Algorithmica, 76 (2016), pp. 796--845] 在轮次、通信和错误概率之间进行了新的权衡。特别是,任何用于在 $r$ 轮中以失败概率 $p_{{err}} = 2^{-E}$ 解决多个 EqualityTesting 的协议都具有通信量 $\Omega(Ek^{1/r})$。我们为多个 EqualityTesting(及其变体)提供了几种算法,这些算法匹配或几乎匹配我们的下界和 [M. Sağlam 和 G. Tardos,第 54 届 IEEE 计算机科学基础研讨会论文集,2013 年,第 678--687 页;J. Brody 等人,算法,76 (2016),第 796--845 页]。对于每个 $r、k、$ 和 $p_{{err}}$(这是微不足道的),EqualityTesting 的下限扩展到 SetIntersection;在相反的方向,我们证明了 $r, k, p_{{err}}$ 的 EqualityTesting 的上限意味着 SetIntersection 上的类似上限,参数 $r+1, k,$ 和 $p_{{err}}$ . 我们将 $p_{{err}}$ 作为独立参数的最初动机来自于在具有最大度数 $\Delta$ 的分布式 (${CONGEST}$) 网络中枚举三角形的问题。我们证明这个问题可以在 $O(\Delta/\log n + \log\log \Delta)$ 时间内以高概率 $1-1/{poly}(n)$ 解决。这击败了平凡的(确定性的)$O(\Delta)$-time 算法,并且优于 [Y. Chang、S. Pettie 和 H. Zhang,第 30 届 ACM-SIAM 离散算法研讨会论文集,2019 年,第 821--840 页;Y. Chang 和 T. Saranurak,ACM 分布式计算原理研讨会论文集,2019 年,第 66--73 页] when $\Delta=\tilde{O}(n^{1/3})$。我们证明这个问题可以在 $O(\Delta/\log n + \log\log \Delta)$ 时间内以高概率 $1-1/{poly}(n)$ 解决。这击败了平凡的(确定性的)$O(\Delta)$-time 算法,并且优于 [Y. Chang、S. Pettie 和 H. Zhang,第 30 届 ACM-SIAM 离散算法研讨会论文集,2019 年,第 821--840 页;Y. Chang 和 T. Saranurak,ACM 分布式计算原理研讨会论文集,2019 年,第 66--73 页] when $\Delta=\tilde{O}(n^{1/3})$。我们证明这个问题可以在 $O(\Delta/\log n + \log\log \Delta)$ 时间内以高概率 $1-1/{poly}(n)$ 解决。这击败了平凡的(确定性的)$O(\Delta)$-time 算法,并且优于 [Y. Chang、S. Pettie 和 H. Zhang,第 30 届 ACM-SIAM 离散算法研讨会论文集,2019 年,第 821--840 页;Y. Chang 和 T. Saranurak,ACM 分布式计算原理研讨会论文集,2019 年,第 66--73 页] when $\Delta=\tilde{O}(n^{1/3})$。第 30 届 ACM-SIAM 离散算法研讨会论文集,2019 年,第 821--840 页;Y. Chang 和 T. Saranurak,ACM 分布式计算原理研讨会论文集,2019 年,第 66--73 页] when $\Delta=\tilde{O}(n^{1/3})$。第 30 届 ACM-SIAM 离散算法研讨会论文集,2019 年,第 821--840 页;Y. Chang 和 T. Saranurak,ACM 分布式计算原理研讨会论文集,2019 年,第 66--73 页] when $\Delta=\tilde{O}(n^{1/3})$。
更新日期:2021-06-01
down
wechat
bug