当前位置: X-MOL 学术IEEE Open J. Commun. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Full-Duplex mmWave Massive MIMO Systems: A Joint Hybrid Precoding/Combining and Self-Interference Cancellation Design
IEEE Open Journal of the Communications Society ( IF 6.3 ) Pub Date : 2021-03-30 , DOI: 10.1109/ojcoms.2021.3069672
Asil Koc 1 , Tho Le-Ngoc 1
Affiliation  

Millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems have been considered as one of the primary candidates for the fifth generation (5G) and beyond 5G wireless communication networks to satisfy the ever-increasing capacity demands. Full-duplex technology can further enhance the advantages of mmWave massive MIMO systems. However, the strong self-interference (SI) is the major limiting factor in the full-duplex technology. Hence, this paper proposes a novel angular-based joint hybrid precoding/combining (AB-JHPC) technique for the full-duplex mmWave massive-MIMO systems. Our primary goals are listed as: (i) improving the self-interference cancellation (SIC), (ii) increasing the intended signal power, (iii) decreasing the channel estimation overhead, (iv) designing the massive MIMO systems with a low number of RF chains. First, the RF-stage of AB-JHPC is developed via slow time-varying angle-of-departure (AoD) and angle-of-arrival (AoA) information. A joint transmit/receive RF beamformer design is proposed for covering (excluding) the AoD/AoA support of intended (SI) channel. Second, the BB-stage of AB-JHPC is constructed via the reduced-size effective intended channel. After using the well-known singular value decomposition (SVD) approach at the BB-stage, we also propose a new semi-blind minimum mean square error (S-MMSE) technique to further suppress the residual SI power by using AoD/AoA parameters. Thus, the instantaneous SI channel knowledge is not needed in the proposed AB-JHPC technique. Finally, we consider a transfer block architecture to minimize the number of RF chains. The numerical results demonstrate that the SI signal is remarkably canceled via the proposed AB-JHPC technique. It is shown that AB-JHPC achieves 85.7 dB SIC and the total amount of SIC almost linearly increases via antenna isolation techniques. We observe that the proposed full-duplex mmWave massive MIMO systems double the achievable rate capacity compared to its half-duplex counterpart as the antenna array size increases and the transmit/receive antenna isolation improves. Moreover, the proposed S-MMSE algorithm provides considerably high capacity than the conventional SVD approach.

中文翻译:

全双工mmWave大规模MIMO系统:联合混合预编码/组合和自干扰消除设计

毫米波(mmWave)大规模多输入多输出(MIMO)系统已被视为第五代(5G)和5G无线通信网络的主要候选产品之一,以满足不断增长的容量需求。全双工技术可以进一步增强mmWave大规模MIMO系统的优势。但是,强大的自干扰(SI)是全双工技术的主要限制因素。因此,本文针对全双工mmWave大规模MIMO系统提出了一种新颖的基于角度的联合混合预编码/合并(AB-JHPC)技术。我们的主要目标被列为:(i)改善自干扰消除(SIC),(ii)增加预期信号功率,(iii)减少信道估计开销,(iv)设计数量少的大规模MIMO系统射频链。首先,AB-JHPC的射频级是通过缓慢的时变离场角(AoD)和到达角(AoA)信息开发的。提出了一种联合发射/接收RF波束成形器设计,以覆盖(排除)预期(SI)信道的AoD / AoA支持。其次,AB-JHPC的BB级是通过减小尺寸的有效预期通道构造的。在BB阶段使用众所周知的奇异值分解(SVD)方法之后,我们还提出了一种新的半盲最小均方误差(S-MMSE)技术,以通过使用AoD / AoA参数进一步抑制残留SI功率。因此,在所提出的AB-JHPC技术中不需要瞬时SI信道知识。最后,我们考虑一种传输块架构,以最大程度地减少RF链的数量。数值结果表明,通过提出的AB-JHPC技术可以显着消除SI信号。结果表明,AB-JHPC通过天线隔离技术可达到85.7 dB的SIC,并且SIC的总量几乎呈线性增加。我们观察到,随着天线阵列尺寸的增加和发射/接收天线隔离度的提高,拟议的全双工mmWave大规模MIMO系统与其半双工相比,可实现的速率容量翻了一番。此外,与传统的SVD方法相比,所提出的S-MMSE算法提供了相当高的容量。我们观察到,随着天线阵列尺寸的增加和发射/接收天线隔离度的提高,拟议的全双工mmWave大规模MIMO系统与其半双工相比,可实现的速率容量翻了一番。此外,与传统的SVD方法相比,所提出的S-MMSE算法提供了相当高的容量。我们观察到,随着天线阵列尺寸的增加和发射/接收天线隔离度的提高,拟议的全双工mmWave大规模MIMO系统与其半双工相比,可实现的速率容量翻了一番。此外,与传统的SVD方法相比,所提出的S-MMSE算法提供了相当高的容量。
更新日期:2021-04-13
down
wechat
bug