当前位置: X-MOL 学术Meteorol. Z. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Barrel of Ilmenau: A large-scale convection experiment to study dust devil-like flow structures.
Meteorologische Zeitschrift ( IF 1.2 ) Pub Date : 2021-03-17 , DOI: 10.1127/metz/2020/1046
Alice Loesch , Ronald du Puits

We present an experimental facility for the validation of numerical simulations on atmospheric dust devils in a controlled laboratory experiment. Dust devils are atmospheric air vortices with a vertical axis, and are formed by intense solar radiation and the resulting vertical temperature gradient. The structure of a typical dust devil is dominated by a radial inflow near the surface and a vertical upward flow within the vortex. These vortices have been studied in recent years using field observations, in situ measurements, and large-eddy simulation (LES). Field tests suffer from the limited area and their unpredictable behavior, while the LES approach cannot resolve the dust devils well enough. Dust devil-like structures may also occur in direct numerical simulation (DNS) with a Rayleigh number of at least Ra = 107$Ra=\nobreak 10^{7}$ in Rayleigh–Bénard convection, with the advantage that the structures can be resolved more precisely. In order to validate the DNS approach and provide measurement data, the airflow is measured inside of a large-scale Rayleigh–Bénard cell of similar geometry (i.e. inside the Barrel of Ilmenau) to the DNS set-up for Rayleigh numbers from Ra = 106$\textit{Ra}=\nobreak 10^{6}$ to Ra = 1012$\textit{Ra}=\nobreak 10^{12}$. For the measurement of the flow in a large volume, an optical measurement method is used to obtain the trajectories of single particles. Since there are no commercial systems that are suitable for such a large measurement volume, we developed our own system.

中文翻译:

伊尔默瑙的大桶:一项大型对流实验,研究粉尘魔鬼般的流动结构。

我们提供了一个实验设施,用于在受控实验室实验中验证大气尘埃魔鬼的数值模拟。尘鬼是具有垂直轴的大气旋涡,由强烈的太阳辐射和由此产生的垂直温度梯度形成。典型的粉尘恶魔的结构主要由表面附近的径向流入和旋涡内的垂直向上流动组成。近年来,已经使用现场观测,原位测量和大涡模拟(LES)对这些涡旋进行了研究。现场测试的局限性在于其有限的区域性和不可预测的行为,而LES方法无法充分解决尘土飞扬的问题。在直接数值模拟(DNS)中,在Rayleigh–Bénard对流中,Rayleigh数至少为Ra = 107 $ Ra = \ nobreak 10 ^ {7} $时,也可能会出现类似灰尘魔鬼的结构。更精确地解决。为了验证DNS方法并提供测量数据,在类似于Ra = 106的Rayleigh数的DNS设置的类似几何形状的大型Rayleigh–Bénard单元内部(即,Ilmenau桶内部)对气流进行了测量。 $ \ textit {Ra} = \ nobreak 10 ^ {6} $到Ra = 1012 $ \ textit {Ra} = \ nobreak 10 ^ {12} $。为了大体积地测量流动,使用光学测量方法来获得单个颗粒的轨迹。由于没有适用于如此大测量量的商业系统,因此我们开发了自己的系统。优点是可以更精确地解析结构。为了验证DNS方法并提供测量数据,在类似于Ra = 106的Rayleigh数的DNS设置的类似几何形状的大型Rayleigh–Bénard单元内部(即,Ilmenau桶内部)对气流进行了测量。 $ \ textit {Ra} = \ nobreak 10 ^ {6} $到Ra = 1012 $ \ textit {Ra} = \ nobreak 10 ^ {12} $。为了大体积地测量流动,使用光学测量方法来获得单个颗粒的轨迹。由于没有适用于如此大测量量的商业系统,因此我们开发了自己的系统。优点是可以更精确地解析结构。为了验证DNS方法并提供测量数据,在类似于Ra = 106的Rayleigh数的DNS设置的类似几何形状的大型Rayleigh–Bénard单元内部(即,Ilmenau桶内部)对气流进行了测量。 $ \ textit {Ra} = \ nobreak 10 ^ {6} $到Ra = 1012 $ \ textit {Ra} = \ nobreak 10 ^ {12} $。为了大体积地测量流动,使用光学测量方法来获得单个颗粒的轨迹。由于没有适用于如此大测量量的商业系统,因此我们开发了自己的系统。气流是在类似几何形状的大型Rayleigh–Bénard单元内部(即,Ilmenau的桶内)与DNS设置(用于Ra = 106 $ \ textit {Ra} = \ nobreak 10 ^ { 6} $到Ra = 1012 $ \ textit {Ra} = \ nobreak 10 ^ {12} $。为了大体积地测量流动,使用光学测量方法来获得单个颗粒的轨迹。由于没有适用于如此大测量量的商业系统,因此我们开发了自己的系统。气流是在类似几何形状的大型Rayleigh–Bénard单元内部(即,Ilmenau的桶内)与DNS设置(用于Ra = 106 $ \ textit {Ra} = \ nobreak 10 ^ { 6} $到Ra = 1012 $ \ textit {Ra} = \ nobreak 10 ^ {12} $。为了大体积地测量流动,使用光学测量方法来获得单个颗粒的轨迹。由于没有适用于如此大测量量的商业系统,因此我们开发了自己的系统。
更新日期:2021-04-12
down
wechat
bug