当前位置: X-MOL 学术J. Plasma Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reimagining full wave rf quasilinear theory in a tokamak
Journal of Plasma Physics ( IF 2.1 ) Pub Date : 2021-04-12 , DOI: 10.1017/s002237782100026x
Peter J. Catto , Elizabeth A. Tolman

The velocity dependent resonant interaction of particles with applied radiofrequency (rf) waves during heating and current drive in the presence of pitch angle scattering collisions gives rise to narrow collisional velocity space boundary layers that dramatically enhance the role of collisions as recently shown by Catto (J. Plasma Phys., vol. 86, 2020, 815860302). The behaviour is a generalization of the narrow collisional boundary layer that forms during Landau damping as found by Johnston (Phys. Fluids, vol. 14, 1971, pp. 2719–2726) and Auerbach (Phys. Fluids, vol. 20, 1977, pp. 1836–1844). For a wave of parallel wave number ${k_{||}}$ interacting with weakly collisional plasma species of collision frequency $\nu$ and thermal speed ${v_{\textrm{th}}}$ , the effective collision frequency becomes of order $\nu {({k_{||}}{v_{th}}/\nu )^{2/3}} \gg \nu $ . The narrow boundary layers that arise because of the diffusive nature of the collisions allow a physically meaningful wave–particle interaction time to be defined that is the inverse of this effective collision frequency. The collisionality implied by the narrow boundary layer results in changes in the standard quasilinear treatment of applied rf fields in tokamaks while remaining consistent with causality. These changes occur because successive poloidal interactions with the rf are correlated in tokamak geometry and because the resonant velocity space dependent interactions are controlled by the spatial and temporal behaviour of the perturbed full wave fields rather than just the spatially local Landau and Doppler shifted cyclotron wave–particle resonance condition associated with unperturbed motion of the particles. The correlation of successive poloidal circuits of the tokamak leads to the appearance in the quasilinear operator of transit averaged resonance conditions localized in velocity space boundary layers that maintain negative definite entropy production.

中文翻译:

重新构想托卡马克中的全波射频准线性理论

在存在俯仰角散射碰撞的情况下,在加热和电流驱动过程中,粒子与应用射频 (rf) 波的速度相关共振相互作用会产生狭窄的碰撞速度空间边界层,这显着增强了碰撞的作用,如 Catto 最近所示。J.等离子物理学。, 卷。86, 2020, 815860302)。该行为是 Johnston 发现的在朗道阻尼期间形成的狭窄碰撞边界层的概括(物理。流体, 卷。14, 1971, pp. 2719–2726) 和 Auerbach (物理。流体, 卷。20, 1977, pp. 1836–1844)。对于一波平行波数 ${k_{||}}$ 与碰撞频率的弱碰撞等离子体物质相互作用 $\nu$ 和热速度 ${v_{\textrm{th}}}$ , 有效碰撞频率变得有序 $\nu {({k_{||}}{v_{th}}/\nu )^{2/3}} \gg \nu $ . 由于碰撞的扩散性质而出现的狭窄边界层允许定义物理上有意义的波粒子相互作用时间,该时间是该有效碰撞频率的倒数。狭窄边界层隐含的碰撞性导致托卡马克中应用射频场的标准拟线性处理发生变化,同时保持与因果关系一致。发生这些变化是因为与 rf 的连续极向相互作用在托卡马克几何中是相关的,并且因为共振速度与空间相关的相互作用受扰动全波场的空间和时间行为控制,而不仅仅是空间局部的朗道和多普勒频移回旋加速波——与粒子的无扰动运动相关的粒子共振条件。
更新日期:2021-04-12
down
wechat
bug