当前位置: X-MOL 学术Int. J. Math. › 论文详情
On the hard Lefschetz theorem for pseudoeffective line bundles
International Journal of Mathematics ( IF 0.604 ) Pub Date : 2021-04-10 , DOI: 10.1142/s0129167x2150035x
Xiaojun Wu

In this paper, we obtain a number of results related to the hard Lefschetz theorem for pseudoeffective line bundles, due to Demailly, Peternell and Schneider. Our first result states that the holomorphic sections produced by the theorem are in fact parallel, when the Chern connection associated with the singular metric is computed in the sense of currents, and the corresponding multiplier ideal sheaves are taken into account. Our proof is based on a control of the covariant derivative in the delicate approximation process used in the construction of these sections. Then we show that there is an isomorphism between the space of such parallel sections and the sheaf cohomology group of appropriate degree. As an application, we show that the closedness property of the sections produces a singular holomorphic foliation on the tangent bundle. Finally, we discuss some questions related to the optimality of the multiplier ideal sheaves involved in the generalized hard Lefschetz theorem.



中文翻译:

关于拟有效线丛的硬 Lefschetz 定理

在本文中,由于 Demailly、Peternell 和 Schneider,我们获得了许多与伪有效线丛的硬 Lefschetz 定理相关的结果。我们的第一个结果表明,当在电流意义上计算与奇异度量相关的陈连接时,由定理产生的全纯部分实际上是平行的,并且考虑了相应的乘法器理想滑轮。我们的证明基于在构建这些部分时使用的精细近似过程中对协变导数的控制。然后我们证明了这种平行截面的空间与适当程度的层上同调群之间存在同构。作为一个应用,我们展示了截面的封闭性在切丛上产生了奇异的全纯叶理。最后,

更新日期:2021-06-10
全部期刊列表>>
virulence
欢迎新作者ACS
中国作者高影响力研究精选
虚拟特刊
屿渡论文,编辑服务
浙大
上海中医药大学
深圳大学
上海交通大学
南方科技大学
浙江大学
清华大学
徐晶
张大卫
彭孝军
北京大学
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
华辉
天合科研
x-mol收录
试剂库存
down
wechat
bug