当前位置: X-MOL 学术Proc. Inst. Mech. Eng. E J. Process Mech. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Marangoni convection in the transient flow of hybrid nanoliquid thin film over a radially stretching disk
Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering ( IF 2.3 ) Pub Date : 2021-04-12 , DOI: 10.1177/09544089211008052
R Tripathi 1
Affiliation  

Within a magnetohydrodynamic environment, Marangoni convection (Thermocapilarity effect) in an unsteady thin film of hybrid nanoliquid flow over a disk has been discussed. A set of simplified Navier-Stokes equation using boundary layer theory is written in order to model the above mentioned flow situation. The dissipative effects caused by viscosity and magnetic field have been incorporated in temperature-balance equation. A suitable choice of transform variables facilitate a system of ordinary differential equations (ODEs) from original partial differential equations (PDEs) representing the flow phenomena. This system of ODEs are solved by shooting technique in conjunction with Runge-Kutta 4th order numerical scheme. This study reveals that by increasing the surface tension along the liquid-air interface, the velocity of hybrid nanoliquid can be increased. In the context of this research work, the hybrid nanoliquid prepared by dispersing blade shaped Al2O3 and Cu nanoparticles, is an ideal liquid as far as liquid coolants are concerned.



中文翻译:

混合纳米液体薄膜在径向拉伸盘上瞬态流动中的Marangoni对流

在磁流体动力学环境中,已经讨论了在盘上混合纳米液体的不稳定薄膜中的Marangoni对流(热电容性效应)。编写了一组使用边界层理论的简化Navier-Stokes方程,以对上述流动情况进行建模。由粘度和磁场引起的耗散效应已纳入温度平衡方程中。变换变量的适当选择有利于从原偏微分方程(PDE的)表示的流动现象常微分方程(常微分方程)的系统。该ODE系统通过射击技术结合Runge-Kutta四阶数值方案进行求解。这项研究表明,通过增加沿液-气界面的表面张力,杂化纳米液体的速度可以提高。在这项研究工作的背景下,通过分散叶片形制备的杂化纳米液体一种2个Ø3就液态冷却剂而言,C uC u纳米颗粒是理想的液体。

更新日期:2021-04-12
down
wechat
bug