当前位置: X-MOL 学术Ramanujan J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Highly composite numbers and the Riemann hypothesis
The Ramanujan Journal ( IF 0.6 ) Pub Date : 2021-04-12 , DOI: 10.1007/s11139-021-00392-0
Jean-Louis Nicolas

Let us denote by d(n) the number of divisors of n, by \({{\,\mathrm{li}\,}}(t)\) the logarithmic integral of t, by \(\beta _2\) the number \(\frac{\log 3/2}{\log 2}=0.584\ldots \) and by R(t) the function \(t\mapsto \frac{2\sqrt{t} +\sum _\rho t^\rho /\rho ^2}{\log ^2 t}\), where \(\rho \) runs over the non-trivial zeros of the Riemann \(\zeta \) function. In his PHD thesis about highly composite numbers, Ramanujan proved, under the Riemann hypothesis, that

$$\begin{aligned}\frac{\log d(n)}{\log 2} \leqslant {{\,\mathrm{li}\,}}(\log n)+\beta _2{{\,\mathrm{li}\,}}(\log ^{\beta _2} n)- \frac{\log ^{\beta _2} n}{\log \log n} -R(\log n)+ {\mathcal {O}}\left( \frac{\sqrt{\log n}}{(\log \log n)^3}\right) \end{aligned}$$

holds when n tends to infinity. The aim of this paper is to give an effective form to the above asymptotic result of Ramanujan.



中文翻译:

高度合成数和黎曼假设

让我们表示由dÑ)的约数的数量Ñ,通过\({{\,\ mathrm {利} \,}}(T)\)的对数积分,由\(\测试_2 \)\(\ frac {\ log 3/2} {\ log 2} = 0.584 \ ldots \)并通过Rt)函数\(t \ mapsto \ frac {2 \ sqrt {t} + \ sum _ \ rho t ^ \ rho / \ rho ^ 2} {\ log ^ 2 t} \),其中\(\ rho \)在Riemann \(\ zeta \)函数的非平凡零上运行。在Rmanmann假设下,Ramanujan在有关高度合成数的PHD论文中证明了:

$$ \ begin {aligned} \ frac {\ log d(n)} {\ log 2} \ leqslant {{\,\ mathrm {li} \,}}(\ log n)+ \ beta _2 {{\, \ mathrm {li} \,}}(\ log ^ {\ beta _2} n)-\ frac {\ log ^ {\ beta _2} n} {\ log \ log n} -R(\ log n)+ { \ mathcal {O}} \ left(\ frac {\ sqrt {\ log n}} {(\ log \ log n)^ 3} \ right)\ end {aligned} $$

n趋于无穷大时成立。本文的目的是为Ramanujan的上述渐近结果提供一种有效的形式。

更新日期:2021-04-12
down
wechat
bug