当前位置: X-MOL 学术Funct. Ecol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Body size determines the thermal coupling between insects and plant surfaces
Functional Ecology ( IF 4.6 ) Pub Date : 2021-04-11 , DOI: 10.1111/1365-2435.13801
Sylvain Pincebourde 1 , Michael E. Dillon 2 , H. Arthur Woods 3
Affiliation  

  1. Most studies in global change biology predict biological impacts of warming from information on macroclimates. Most organisms, however, live in microhabitats with physical conditions which are decoupled to varying degrees from those in macroclimates depending partly on organism body size.
  2. Small ectotherms of a few millimetres in length live deep in surface boundary layers such that their heat budgets are dominated by different processes compared to larger ectotherms, whose bodies emerge from surface boundary layers. We therefore hypothesized that the body size relative to surface boundary layer thickness generates different patterns of body temperature variation for organisms in the same nominal habitats.
  3. We tested this hypothesis in a community of arthropods living on a subalpine plant by combining physical models to acquire high-resolution time series of operative temperatures, thermal imaging to assess the strength of coupling between physical models or arthropod bodies and surrounding leaf temperatures, and a cross-scale approach to infer the temperature distributions available to small ectotherms.
  4. The size of the physical model strongly influenced operative temperature dynamics: the bigger, the warmer. Small models were just a few degrees warmer than leaf surfaces, whereas large models deviated from leaf temperature by >10°C.
  5. We found similar patterns of body temperature of naturally occurring arthropods. Temperatures of small insects closely tracked leaf surface temperatures even in full sun, whereas larger insects were warmer than leaf surfaces.
  6. At the whole plant scale, the thermal diversity of leaf surfaces was high, especially in the sun, typically generating a range of microclimatic temperatures (for small insects) of >10°C. Larger insects instead could move between shaded and sunny portions of the whole plant to vary body temperatures by a larger extent.
  7. The bulk of animal biodiversity consists of small terrestrial arthropods, the majority of which are associated with plant surfaces at some point in their life cycles. The distribution of body sizes determines how much thermal diversity is available for behavioural thermoregulation, thereby contributing to their potential response to climate change.


中文翻译:

体型决定昆虫和植物表面之间的热耦合

  1. 大多数全球变化生物学研究都根据大气候信息预测变暖对生物的影响。然而,大多数生物生活在物理条件与大气候环境不同程度分离的微生境中,部分取决于生物体的大小。
  2. 几毫米长的小型变温动物生活在表面边界层的深处,因此与较大的变温动物相比,它们的热量预算由不同的过程主导,后者的身体从表面边界层出现。因此,我们假设身体大小相对于表面边界层厚度会为相同名义栖息地的生物产生不同的体温变化模式。
  3. 我们在生活在亚高山植物上的节肢动物群落中测试了这一假设,方法是结合物理模型来获取高分辨率的工作温度时间序列、热成像来评估物理模型或节肢动物体与周围叶片温度之间的耦合强度,以及跨尺度方法来推断小型变温动物可用的温度分布。
  4. 物理模型的大小强烈影响操作温度动态:越大,温度越高。小型模型仅比叶面温度高几度,而大型模型与叶温的偏差 > 10°C。
  5. 我们发现了自然发生的节肢动物体温的相似模式。即使在充足的阳光下,小昆虫的温度也与叶表面温度密切相关,而较大的昆虫则比叶表面更暖和。
  6. 在整个植物范围内,叶片表面的热多样性很高,尤其是在阳光下,通常会产生 >10°C 的小气候温度范围(对于小昆虫)。相反,较大的昆虫可以在整个植物的阴凉部分和阳光充足的部分之间移动,从而在更大程度上改变体温。
  7. 大部分动物生物多样性由小型陆生节肢动物组成,其中大部分在其生命周期的某个时刻与植物表面有关。体型的分布决定了有多少热多样性可用于行为体温调节,从而有助于它们对气候变化的潜在反应。
更新日期:2021-04-11
down
wechat
bug