当前位置: X-MOL 学术J. Braz. Soc. Mech. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Vibration analysis and numerical simulation of fluid–structure interaction phenomenon on a turbine blade
Journal of the Brazilian Society of Mechanical Sciences and Engineering ( IF 2.2 ) Pub Date : 2021-04-10 , DOI: 10.1007/s40430-021-02933-6
M. Reza Elhami , Mohammad Reza Najafi , Mohammad Tashakori Bafghi

In this paper, the vibrational analysis of the turbine blade and the effect of pressure on the rotor surface in the fluid–structure interaction are investigated. Due to the complex and specific working conditions of a turbine blade, the FSI phenomenon, as well as modal analysis, has been investigated in this work. The turbine blade was exposed to centrifugal force and fluid forces due to high pressure working conditions. The simulation of the turbine blade has been carried out by ANSYS software, and the results were validated; then, fluid and structure coupling, displacement rate and vibration frequency variation of turbine blades were investigated at different inlet fluid velocities. For analysis of the results, the turbine blade tip deviation and its impact on the fluid flow pressure have been considered. Besides, the effect of surface pressure, as well as tip displacement on the vibrational frequency variations, was investigated. As the inlet velocity of the fluid flow increases, the applied pressure on the rotor increases and as a result the vibration amplitude also increases. The linear variation of transverse displacement along the blade was obtained. Also, the results of two-way coupling show that the pressure variation on the rotor in the coupled mode is less significant than in the uncoupled mode. The amount of applied pressure on surface moves from the front to the center of the rotor, and also the pressure increases at the downside and decreases at the top of the rotor in the coupled mode.



中文翻译:

涡轮叶片上流固耦合现象的振动分析和数值模拟

在本文中,研究了涡轮叶片的振动分析以及在流体-结构相互作用中压力对转子表面的影响。由于涡轮叶片的复杂且特定的工作条件,在这项工作中已对FSI现象以及模态分析进行了研究。由于高压工作条件,涡轮叶片承受离心力和流体力。涡轮叶片的仿真已经通过ANSYS软件进行,结果得到了验证。然后,研究了在不同进气速度下涡轮叶片的流固耦合,位移速率和振动频率变化。为了分析结果,已考虑了涡轮叶片尖端偏差及其对流体流动压力的影响。此外,表面压力的影响 以及尖端位移对振动频率变化的影响。随着流体流的入口速度增加,施加在转子上的压力增加,结果,振动幅度也增加。获得了沿叶片的横向位移的线性变化。而且,双向耦合的结果表明,在耦合模式下转子上的压力变化比在非耦合模式下小。表面上施加的压力量从转子的前部移动到中心,并且在耦合模式下,压力在转子的下侧增加而在转子的顶部减小。施加在转子上的压力增加,结果,振动幅度也增加。获得了沿叶片的横向位移的线性变化。而且,双向耦合的结果表明,在耦合模式下转子上的压力变化比在非耦合模式下小。表面上施加的压力量从转子的前部移动到中心,并且在耦合模式下,压力在转子的下侧增加而在转子的顶部减小。施加在转子上的压力增加,结果,振动幅度也增加。获得了沿叶片的横向位移的线性变化。而且,双向耦合的结果表明,在耦合模式下转子上的压力变化比在非耦合模式下小。在表面上施加的压力量从转子的前部移动到中心,并且在耦合模式下,压力在转子的下侧增大,在转子的顶部减小。

更新日期:2021-04-11
down
wechat
bug