当前位置: X-MOL 学术Propuls. Power Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical solution of micropolar fluid flow via stretchable surface with chemical reaction and melting heat transfer using Keller-Box method
Propulsion and Power Research ( IF 5.4 ) Pub Date : 2021-04-09 , DOI: 10.1016/j.jppr.2020.11.006
Khilap Singh , Alok Kumar Pandey , Manoj Kumar

The main theme of this research is to find the numerical results of stagnation point flow of micropolar fluid over a porous stretchable surface due to the physical effects of internal heat generation/absorption, melting heat transfer and chemical reaction via Keller-Box method (KBM). The graphs and tables are depicted and explained for various embedded parameters. The range of melting heat transfer parameter is 0M3, the range of chemical reaction parameter is 0Kr1 whereas the values of space-temperature dependent heat source/sink parameters lies in 0.4Q0.4 and 2Q2. The upshots of the current problem illustrate that at fluid-solid interface, rate of HMT (heat and mass transfer) declined on escalating the values of stretching parameter. Moreover, as the values of internal heat source/sink parameter increases, heat transfer rate declines at fluid-solid interface.



中文翻译:

微极流体通过可拉伸表面与化学反应和熔化传热的 Keller-Box 方法数值解

本研究的主题是通过 Keller-Box 方法 (KBM) 寻找微极流体在多孔可拉伸表面上由于内部发热/吸收、熔化传热和化学反应的物理效应而产生的驻点流动的数值结果. 图表和表格针对各种嵌入式参数进行了描绘和解释。熔化传热参数范围为03, 化学反应参数范围为 0r1 而空间温度相关的热源/汇参数的值在于 -0.40.4-22. 当前问题的结果表明,在流固界面,随着拉伸参数值的增加,HMT(传热和传质)速率下降。此外,随着内部热源/汇参数值的增加,流固界面处的传热率下降。

更新日期:2021-04-09
down
wechat
bug