当前位置: X-MOL 学术Ocean Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Model-free anti-swing control of complex-shaped payload with offshore floating cranes and a large number of lift wires
Ocean Engineering ( IF 5 ) Pub Date : 2021-04-08 , DOI: 10.1016/j.oceaneng.2021.108868
Zhengru Ren , Amrit Shankar Verma , Behfar Ataei , Karl Henning Halse , Hans Petter Hildre

Being one of the most commonly used offshore operations, offshore lifting operations become increasingly challenging due to the gradually growing size and weight of payloads. The research on automatic control in lifting operations, e.g., anti-swing control and heave compensation, only considers simple-shaped payloads, such as lumped-mass rigid points. However, the sizes and orientations of many structures cannot be neglected. To lift heavy and large-scale payloads, larger and higher cranes are required. Alternatively, it is possible to share the total loads by enhancing the number of lift wires that may limit the tension on each lift wire. However, the complicated configuration introduces significant complexity into the design of the automatic anti-swing algorithm, especially to the control allocation module. This paper performs a preliminary study on the anti-swing control of a complex-shaped suspended payload lift using a floating crane vessel and a large number of lift wires. Inspired by the knowledge of inverse dynamics and range-based localization, a general model-free anti-swing control scheme is proposed. The controller has a simple form without considering state–space equations, but it can reduce the pendular payload motion regardless of the detailed system configuration. An offshore wind turbine tower–nacelle–rotor preassembly installation using floating crane vessel is adopted as a case study to verify the performance of the proposed control strategy.



中文翻译:

海上浮式起重机和大量吊索的复杂形状有效载荷的无模型防摇摆控制

作为最常用的海上作业之一,由于有效载荷的尺寸和重量逐渐增加,海上起重作业变得越来越具有挑战性。提升操作中的自动控制(例如,防摆控制和升沉补偿)的研究仅考虑形状简单的有效载荷,例如集中质量的刚性点。但是,许多结构的尺寸和方向不能忽略。为了举起重的和大型的有效载荷,需要更大和更高的起重机。或者,可以通过增加举升钢丝的数量来分担总负载,这可能会限制每条举升钢丝上的张力。但是,复杂的配置给自动防摆算法的设计带来了极大的复杂性,特别是控制分配模块。本文对使用浮动起重机船和大量起重缆索的复杂形状的悬挂式有效载荷举升机的防摇摆控制进行了初步研究。受逆动力学和基于范围的定位知识的启发,提出了一种通用的无模型防摆控制方案。控制器的形式很简单,无需考虑状态空间方程,但是无论系统配置的详细程度如何,它都可以减少摆式有效载荷的运动。以使用浮式起重机的海上风力发电机塔-机舱-转子预装装置为案例研究,以验证所提出的控制策略的性能。受逆动力学和基于范围的定位知识的启发,提出了一种通用的无模型防摆控制方案。控制器的形式很简单,无需考虑状态空间方程,但是无论系统配置的详细程度如何,它都可以减少摆式有效载荷的运动。以使用浮式起重机的海上风力发电机塔-机舱-转子预装装置为案例研究,以验证所提出的控制策略的性能。受逆动力学和基于范围的定位知识的启发,提出了一种通用的无模型防摆控制方案。控制器的形式很简单,无需考虑状态空间方程,但是无论系统配置的详细程度如何,它都可以减少摆式有效载荷的运动。以使用浮式起重机的海上风力发电机塔-机舱-转子预装装置为案例研究,以验证所提出的控制策略的性能。

更新日期:2021-04-09
down
wechat
bug