当前位置: X-MOL 学术ICMx › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Triiodothyronine prevents tissue hypoxia in experimental sepsis: potential therapeutic implications
Intensive Care Medicine Experimental ( IF 2.8 ) Pub Date : 2021-04-09 , DOI: 10.1186/s40635-021-00382-y
Iordanis S. Mourouzis , Athanasios I. Lourbopoulos , Athanasios G. Trikas , Ioulia K. Tseti , Constantinos I. Pantos

Tissue hypoxia occurs frequently in sepsis even after apparent restoration of stable systemic hemodynamics (macro- to micro-circulation uncoupling). Low cellular oxygen content results in neo-vessel formation with abnormal vasomotor response, increased vascular permeability and thrombosis (pathologic angiogenesis) [1] and ultimately in organ failure. Thyroid hormone (TH) which is critical regulator of organ maturation, physiologic angiogenesis and mitochondrial biogenesis can adapt heart and other organs to hypoxia during development and after tissue injury later in adult life via regulation of p38 MAPK and Akt signaling pathways [2]. Along this line, the present study explored the potential of triiodothyronine (T3) to prevent tissue hypoxia which occurs early in experimental sepsis despite cardiac hemodynamics being preserved.

The protocol was approved by the Institutional Animal Care and Use Committee of Medical School, National and Kapodistrian University of Athens. Sepsis was induced in adult male 10- to 12-week-old C57BL/6 N mice by ligation distal to the ileocecal valve (25% of total cecum length) and perforation by a single 21G puncture (CLP). Animals were treated with a single dose of either vehicle (n = 8, placebo group) or T3 (n = 8, 0.3 μg/g, T3 group) intraperitoneally immediately after surgery. Naive animals were used as control (n = 9, naive group). Animals were killed 18 h after the CLP procedure. Lactate was measured with L-lactate assay kit in serum (Sigma-Aldrich, MAK329). Cardiac and liver hypoxia at cellular level was detected using Hypoxyprobe™ Plus kit (pimonidazole hydrochloride, PMZ) on frozen, 4% paraformaldehyde fixed tissues. PMZ was administered intravenously 2 h before the killing at a dosage of 60 mg/kg. PMZ is reductively activated in hypoxic cells (pO2 < 10 mm Hg) and forms stable adducts (sulphydryl) groups in proteins and amino acids. A specific antibody (FITC-MAb1, 1:200, overnight, 4 °C) that binds to these adducts was used combined with a chromogenic anti-FITC secondary antibody (1:200, 1 h, RT) and allowed detection by immunoperoxidase staining. Captured microscopy images were analyzed with ImageJ by automated demarcation of the PMZ-positive compared to the PMZ-negative area. Cardiac performance was assessed by echocardiography. Cardiac output (ml/min) was 14.7 (SEM, 1.0), 12.1(0.7) and 14(1.0) and heart rate (beats/min) 444(23), 439(16) and 427(9) for naïve, placebo and T3, respectively (p = ns). CLP resulted in increased lactate levels and cardiac and liver hypoxia at cellular level (PMZ staining) in placebo, but not in T3-treated group (Fig. 1).

Fig. 1
figure1

Representative microscopy images after pimonidazole (PMZ) staining from heart and liver tissues of naive (a and d), placebo (b and e) and T3-treated (c and f) animals. Detection of hypoxia (PMZ positive) was based on immunoperoxidase staining (brown color). Analysis of the pictures for detection of the PMZ-positive signal and area was performed in ImageJ using the "Threshold Color" function. Selection of threshold values was based on stained sections from naïve animals. "PMZ-positive" % area of the heart and liver tissue was identified as the percentage of pixels with color above the set threshold to total pixels in each picture. Background areas with no tissue were removed from the calculation. g Lactate levels in serum were 5.2 ± 0.28 mM in placebo and 4.2 ± 0.35 in T3-treated group 18 h after surgery, p < 0.05. Baseline lactate levels in naive animals were 4.1 ± 0.3 mM, p < 0.05 vs placebo only. h Quantification of PMZ-positive staining in left ventricular tissue was 4% ± 0.5 in placebo and 1.5% ± 0.5 in T3-treated hearts 18 h after surgery, p = 0.028. i PMZ-positive staining in liver was 3.8% ± 1.4 in placebo and 0.3% ± 0.1 in T3-treated hearts, p = 0.026. Results are presented as mean ± SEM. *p < 0.05 vs placebo

Full size image

TH signaling seems to be crucial in the response to lung injury in experimental sepsis and ventilator-induced trauma [3]. In addition, the present study demonstrated that T3 treatment can prevent tissue hypoxia in cardiac and liver samples which occurs early in experimental sepsis (within 18 h) before cardiac output is impaired. PMZ staining was used to detect tissue pO2 < 10 mmHg. Oxygen below this level results in activation of HIF1α-dependent regulatory mechanisms which promote pathologic angiogenesis, changes in immune response and determine sepsis-induced injury progression [4]. T3 treatment was also shown to significantly lower circulating lactate levels probably due to the prevention of tissue hypoxia. However, favorable actions of T3 on cellular metabolism may also account for this effect. T3 can improve coupling of glycolysis to glucose oxidation and decrease H+ production via its action on pyruvate dehydrogenase activity (PDH) [5]. PDH is found to be suppressed during sepsis [6]. This experimental evidence may be of therapeutic relevance, particularly for COVID-19 therapy where tissue hypoxia prevails [7]. Triiodothyronine has previously been administered in dopamine-dependent shock to support hemodynamics [8]. More recently, the efficacy and safety of the use of triiodothyronine has been investigated in patients with anterior STEMI undergoing angioplasty (ThyRepair trial EudraCT: 2016-000631-40). This study has been successfully completed without major safety issues [9, Suppl.Material]. Accordingly, a phase II randomized double-blind placebo-controlled study is underway to demonstrate the safety and efficacy of T3 using the same dose in critically ill COVID-19 patients (Thy-Support study, NCT04348513, EudraCT: 2020-001623-13) [9].

Raw data and datasets used and/or analyzed during the current study are available from the corresponding author on request.

  1. 1.

    Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C, Stark H et al (2020) Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N Engl J Med 383(2):120–128

    CAS Article Google Scholar

  2. 2.

    Pantos C, Mourouzis I, Saranteas T, Clavé G, Ligeret H, Noack-Fraissignes P, Renard PY, Massonneau M, Perimenis P et al (2009) Thyroid hormone improves postischaemic recovery of function while limiting apoptosis: a new therapeutic approach to support hemodynamics in the setting of ischaemia-reperfusion? Basic Res Cardiol 104(1):69–77

    CAS Article Google Scholar

  3. 3.

    Ma SF, Xie L, Pino-Yanes M, Sammani S, Wade MS, Letsiou E, Siegler J, Wang T, Infusino G et al (2011) Type 2 deiodinase and host responses of sepsis and acute lung injury. Am J Respir Cell Mol Biol 45(6):1203–1211

    CAS Article Google Scholar

  4. 4.

    Ebbesen P, Eckardt KU, Ciampor F, Pettersen EO (2004) Linking measured intercellular oxygen concentration to human cell functions. Acta Oncol 43(6):598–600

    CAS Article Google Scholar

  5. 5.

    Liu Q, Clanachan AS, Lopaschuk GD (1998) Acute effects of triiodothyronine on glucose and fatty acid metabolism during reperfusion of ischemic rat hearts. Am J Physiol 275(3):E392–E399

    CAS PubMed Google Scholar

  6. 6.

    Nuzzo E, Liu X, Berg K, Andersen L, Doninno M (2015) Pyruvate dehydrogenase levels are low in sepsis. Crit Care 19:P33

    Article Google Scholar

  7. 7.

    Pantos C, Tseti I, Mourouzis I (2020) Use of triiodothyronine to treat critically ill COVID-19 patients: a new clinical trial. Crit Care 24:209

    Article Google Scholar

  8. 8.

    Hesch RD, Hüsch M, Ködding R, Höffken B, Meyer T (1981) Treatment of dopamine-dependent shock with triiodothyronine. Endocr Res Commun 8(4):229–237

    CAS Article Google Scholar

  9. 9.

    Pantos C, Kostopanagiotou G, Armaganidis A, Trikas A, Tseti I, Mourouzis I (2020) Triiodothyronine for the treatment of critically ill patients with COVID-19 infection: a structured summary of a study protocol for a randomised controlled trial. Trials 21:573

    CAS Article Google Scholar

Download references

We would like to thank Aggelos Pavlopoulos, Nefeli Zerva and Despoina Papassava for their technical support during experimentation.

This project was supported by a grant from Uni-Pharma Pharmaceutical Company. The study sponsor had no involvement in study design, collection, analysis, and interpretation of data.

Affiliations

  1. Department of Pharmacology, National and Kapodistrian University of Athens, 75 MikrasAsias Ave., Goudi, 11527, Athens, Greece

    Iordanis S. Mourouzis, Athanasios I. Lourbopoulos, Athanasios G. Trikas, Ioulia K. Tseti & Constantinos I. Pantos

  2. Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany

    Athanasios I. Lourbopoulos

  3. Department of Neurointensive Care, Schoen Klinik Bad Aibling, Kolbermoorerstrasse 72 Bad Aibling, Bayern, Germany

    Athanasios I. Lourbopoulos

Authors
  1. Iordanis S. MourouzisView author publications

    You can also search for this author in PubMed Google Scholar

  2. Athanasios I. LourbopoulosView author publications

    You can also search for this author in PubMed Google Scholar

  3. Athanasios G. TrikasView author publications

    You can also search for this author in PubMed Google Scholar

  4. Ioulia K. TsetiView author publications

    You can also search for this author in PubMed Google Scholar

  5. Constantinos I. PantosView author publications

    You can also search for this author in PubMed Google Scholar

Contributions

I.M.: concept, experimentation, data gathering, interpretation and revision of the manuscript. A.L.: experimentation, data gathering, data analysis and revision of the manuscript. A.T.: data analysis, interpretation and revision of the manuscript. I.T.: concept and revision of the manuscript. C.P.: concept, study design, data gathering, interpretation and drafting of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Constantinos I. Pantos.

Ethics approval and consent to participate

The protocol was approved by the Institutional Animal Care and Use Committee of Medical School, National and Kapodistrian University of Athens. All animal experiments conformed to the revised Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council "Guide for the Care and Use of Laboratory Animals" National Academy Press, Washington, D.C. 1996.

Consent for publication

The work described has not been published before and is not under consideration for publication anywhere else. The submitted work is original and has been approved for publication by all co-authors.

Competing interests

The following pending patents are relevant to the work in this manuscript. PCT/EP2019/087056. L-triiodothyronine (T3) for use in limiting microvascular obstruction. Greek Patent Office, number of case: 22-0002577373. Composition comprising L-triiodothyronine (T3) for use in the treatment of critically ill patients with coronavirus infection. Greek Patent Office, number of case 22-0003823965. Composition comprising L-triiodothyronine (T3) for use in the treatment of tissue hypoxia. IT, managing director of Uni-Pharma, is the sponsor of these patents. CP and IM are the inventors and hold royalties in relation to these patents.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

Verify currency and authenticity via CrossMark

Cite this article

Mourouzis, I.S., Lourbopoulos, A.I., Trikas, A.G. et al. Triiodothyronine prevents tissue hypoxia in experimental sepsis: potential therapeutic implications. ICMx 9, 17 (2021). https://doi.org/10.1186/s40635-021-00382-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s40635-021-00382-y



中文翻译:

Triiodothyronine预防实验性败血症中的组织缺氧:潜在的治疗意义

即使在明显恢复稳定的系统血流动力学(宏循环至微循环解偶联)后,脓毒症中也经常发生组织缺氧。低的细胞氧含量导致新生血管形成,具有异常的血管舒缩反应,增加的血管通透性和血栓形成(病理性血管生成)[1],并最终导致器官衰竭。甲状腺激素(TH)是器官成熟,生理性血管生成和线粒体生物发生的关键调节器,可以通过调节p38 MAPK和Akt信号通路使心脏和其他器官在发育过程中以及成年后的组织损伤后适应缺氧[2]。沿着这一思路,本研究探索了三碘甲腺嘌呤(T3)预防组织缺氧的潜力,尽管保留了心脏血液动力学,但组织缺氧发生在实验性脓毒症的早期。

该方案已由雅典国立和卡波迪斯安大学医学院的机构动物护理和使用委员会批准。通过结扎回盲肠瓣远端(盲肠总长度的25%)并通过单次21G穿刺穿孔,在成年雄性10至12周大的C57BL / 6 N小鼠中诱发败血症。 手术后立即腹腔内用单剂量媒介物(n  = 8,安慰剂组)或T3(n = 8,0.3μg/ g,T3组)治疗动物。幼稚的动物被用作对照(n = 9,天真小组)。CLP程序后18小时将动物处死。用血清中的L-乳酸盐测定试剂盒(Sigma-Aldrich,MAK329)测量乳酸盐。使用Hypoxyprobe™Plus试剂盒(盐酸吡莫尼唑,PMZ)在4%低聚甲醛固定的冷冻组织上检测到心脏和肝脏的细胞缺氧。在杀死前2小时静脉内给予PMZ,剂量为60mg / kg。PMZ在低氧细胞(pO2 <10 mm Hg)中被还原活化,并在蛋白质和氨基酸中形成稳定的加合物(巯基)。与这些加合物结合的特异性抗体(FITC-MAb1,1:200,过夜,4°C)与发色抗FITC二抗(1:200,1 h,RT)结合使用,并通过免疫过氧化物酶染色进行检测。与PMZ阴性区域相比,通过自动划定PMZ阳性区域,使用ImageJ分析捕获的显微镜图像。通过超声心动图评估心脏性能。天真的,安慰剂的心输出量(ml / min)是14.7(SEM,1.0),12.1(0.7)和14(1.0),心率(beats / min)444(23),439(16)和427(9)和T3分别(p  = ns)。CLP导致安慰剂中细胞水平的乳酸水平升高以及心脏和肝脏缺氧(PMZ染色),但在T3治疗组中则没有(图1)。

图。1
图1

pimonidazole(PMZ)从幼稚(a 和d),安慰剂(b 和e)和经T3处理(c 和f) 动物。缺氧(PMZ阳性)的检测基于免疫过氧化物酶染色(棕色)。使用“阈值颜色”功能在ImageJ中对图片进行分析以检测PMZ阳性信号和区域。阈值的选择基于未加工动物的染色切片。心脏和肝脏组织的“ PMZ阳性”%面积被标识为颜色大于设置阈值的像素占每个图片中总像素的百分比。没有组织的背景区域从计算中删除。g术后18 h,安慰剂组血清中乳酸水平为5.2±0.28 mM,T3处理组血清中乳酸水平为4.2±0.35,p  <0.05。幼稚动物的基线乳酸水平为4.1±0.3 mM, 与安慰剂相比,p <0.05。术后18 h,左心室组织中PMZ阳性染色的定量为安慰剂4%±0.5,经T3处理的心脏为1.5%±0.5,p  = 0.028。在肝脏PMZ阳性染色为3.8%±1.4安慰剂和在T3处理的心脏0.3%±0.1,p  = 0.026。结果表示为平均值±SEM。* p  <0.05与安慰剂

全尺寸图片

TH信号似乎在实验性败血症和呼吸机诱发的创伤对肺部损伤的反应中至关重要[3]。此外,本研究表明,T3处理可预防心脏和肝脏样本中的组织缺氧,这种缺氧发生在实验性败血症的早期(18小时内),而心输出量受损。PMZ染色用于检测组织pO2 <10 mmHg。低于此水平的氧气会激活HIF1α依赖性调节机制,从而促进病理性血管生成,改变免疫反应并确定败血症诱导的损伤进展[4]。还表明,T3处理可显着降低循环乳酸盐水平,这可能是由于预防了组织缺氧。但是,T3对细胞代谢的有利作用也可以解释这种作用。+通过其对丙酮酸脱氢酶活性(PDH)的作用来生产[5]。发现败血症期间PDH被抑制[6]。该实验证据可能具有治疗意义,特别是对于组织缺氧普遍存在的COVID-19治疗[7]。先前已在多巴胺依赖性休克中给予三碘甲状腺素以支持血流动力学[8]。最近,已对三碘甲甲状腺氨酸在行血管成形术的前STEMI患者中使用的有效性和安全性进行了研究(ThyRepair试验EudraCT:2016-000631-40)。这项研究已成功完成,没有重大安全问题[9,补充材料]。因此,正在进行一项II期随机双盲安慰剂对照研究,以证明在重症COVID-19患者中使用相同剂量的T3的安全性和有效性(Thy-Support研究,NCT04348513,

当前研究中使用和/或分析的原始数据和数据集可应要求从相应的作者处获得。

  1. 1。

    Ackermann M,Verleden SE,Kuehnel M,Haverich A,Welte T,Laenger F,Vanstapel A,Werlein C,Stark H等人(2020)肺血管内皮炎,血栓形成和COVID-19中的血管生成。英格兰医学杂志383(2):120–128

    CAS文章Google学术搜索

  2. 2。

    Pantos C,Mourouzis I,Saranteas T,ClavéG,Ligeret H,Noack-Fraissignes P,Renard PY,Massonneau M,Perimenis P等人(2009)甲状腺激素可改善缺血后功能的恢复,同时限制细胞凋亡:一种新的支持疗法缺血再灌注的血流动力学?基本水合乙二醇104(1):69–77

    CAS文章Google学术搜索

  3. 3。

    Ma SF,Xie L,Pino-Yanes M,Sammani S,Wade MS,Letsiou E,Siegler J,Wang T,Infusino G et al(2011)2型脱碘酶和败血症和急性肺损伤的宿主反应。Am J呼吸细胞分子生物学45(6):1203-1211

    CAS文章Google学术搜索

  4. 4,

    Ebbesen P,Eckardt KU,Ciampor F,Pettersen EO(2004)将测得的细胞间氧浓度与人体细胞功能联系起来。行动学报43(6):598–600

    CAS文章Google学术搜索

  5. 5,

    Liu Q,Clanachan AS,Lopaschuk GD(1998)碘甲状腺素对缺血大鼠心脏再灌注过程中葡萄糖和脂肪酸代谢的急性影响。美国生理学杂志275(3):E392–E399

    CAS PubMed Google学术搜索

  6. 6,

    Nuzzo E,Liu X,Berg K,Andersen L,Doninno M(2015)脓毒症的丙酮酸脱氢酶水平低。暴击护理19:P33

    文章Google学术搜索

  7. 7

    Pantos C,Tseti I,Mourouzis I(2020)使用三碘甲状腺素治疗重症COVID-19患者:一项新的临床试验。暴击护理24:209

    文章Google学术搜索

  8. 8。

    Hesch RD,HüschM,KöddingR,HöffkenB,Meyer T(1981)用三碘甲状腺素治疗多巴胺依赖性休克。Endocr Res Commun 8(4):229–237

    CAS文章Google学术搜索

  9. 9。

    Pantos C,Kostopanagiotou G,Armaganidis A,Trikas A,Tseti I,Mourouzis I(2020)三碘甲状腺素用于治疗重症COVID-19感染患者:一项随机对照试验研究方案的结构概述。试用21:573

    CAS文章Google学术搜索

下载参考

我们要感谢Aggelos Pavlopoulos,Nefeli Zerva和Despoina Papassava在实验过程中提供的技术支持。

该项目得到了Uni-Pharma Pharmaceutical Company的资助。研究发起人没有参与研究设计,数据收集,分析和解释。

隶属关系

  1. 雅典国立和卡波迪斯式大学药理学系,希腊古迪MikrasAsias Ave. 75,11527,希腊雅典

    Iordanis S. Mourouzis,Athanasios I. Lourbopoulos,Athanasios G. Trikas,Ioulia K. Tseti和Constantinos I. Pantos

  2. 慕尼黑大学医学中心卒中和痴呆症研究所(ISD),德国慕尼黑

    Athanasios I. Lourbopoulos

  3. Schoen Klinik Bad Aibling神经重症监护系,Kolbermoorerstrasse 72 Bad Aibling,德国拜仁

    Athanasios I. Lourbopoulos

作者
  1. Iordanis S. Mourouzis查看作者出版物

    您也可以在PubMed Google学术搜索中搜索该作者 

  2. Athanasios I. Lourbopoulos查看作者出版物

    您也可以在PubMed Google学术搜索中搜索该作者 

  3. Athanasios G. Trikas查看作者出版物

    您也可以在PubMed Google学术搜索中搜索该作者 

  4. Ioulia K. Tseti查看作者出版物

    您也可以在PubMed Google学术搜索中搜索该作者 

  5. Constantinos I. Pantos查看作者出版物

    您也可以在PubMed Google学术搜索中搜索该作者 

会费

IM:手稿的概念,实验,数据收集,解释和修订。AL:实验,数据收集,数据分析和手稿修订。AT:数据分析,手稿的解释和修订。IT:手稿的概念和修订。CP:手稿的概念,研究设计,数据收集,解释和起草。所有作者阅读并认可的终稿。

通讯作者

对应于君士坦丁堡一世·潘托斯。

道德规范的批准和参与同意

该方案已由雅典国立和卡波迪斯安大学医学院的机构动物护理和使用委员会批准。所有动物实验均符合经修订的实验动物资源研究所,生命科学委员会,国家研究委员会的“实验动物的护理和使用指南”,国家科学院出版社,华盛顿特区,1996年。

同意发表

所描述的作品之前从未发表过,也没有考虑在其他任何地方发表。提交的作品是原始作品,并且已被所有共同作者批准发表。

利益争夺

以下正在申请的专利与本手稿的工作有关。PCT / EP2019 / 087056。L-triiodothyronine(T3)用于限制微血管阻塞。希腊专利局,案件编号:22-0002577373。包含L-三碘甲状腺素(T3)的组合物,用于治疗患有冠状病毒感染的重症患者。希腊专利局,案号22-0003823965。用于治疗组织缺氧的包含L-三碘甲状腺素(T3)的组合物。Uni-Pharma的常务董事IT是这些专利的赞助商。CP和IM是发明人,并拥有与这些专利有关的特许权使用费。

发行人的便条

对于已发布地图和机构隶属关系中的管辖权主张,Springer Nature保持中立。

开放存取本文是根据知识共享署名4.0国际许可许可的,该许可允许以任何媒介或格式使用,共享,改编,分发和复制,只要您对原始作者和出处给予适当的信誉,即可提供链接到知识共享许可,并指出是否进行了更改。本文的图像或其他第三方材料包含在该文章的知识共享许可中,除非在该材料的信用额度中另有说明。如果该材料未包含在该文章的创用CC许可中,并且您的预期使用未得到法律法规的许可或超出了许可的使用范围,则您将需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。

转载和许可

通过CrossMark验证货币和真实性

引用本文

Mourouzis,IS,Lourbopoulos,AI,Trikas,AG等。Triiodothyronine可预防实验性败血症中的组织缺氧:潜在的治疗意义。ICMx 9, 17(2021)。https://doi.org/10.1186/s40635-021-00382-y

下载引文

  • 收到

  • 已接受

  • 发表时间

  • DOI https //doi.org/10.1186/s40635-021-00382-y

更新日期:2021-04-09
down
wechat
bug