当前位置: X-MOL 学术Vehicle Syst. Dyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A coupled force predictive control of vehicle stability using front/rear torque allocation with experimental verification
Vehicle System Dynamics ( IF 3.5 ) Pub Date : 2021-04-08 , DOI: 10.1080/00423114.2021.1912363
Reza Hajiloo 1 , Amir Khajepour 1 , Halit Zengin 2 , Alireza Kasaiezadeh 3 , Shih-Ken Chen 3
Affiliation  

This paper investigates the handling control and stability of an all-wheel-drive vehicle whose axles are individually equipped with an electric motor connected to an open differential. This could offer a potential configuration for the mass production of electric all-wheel-drive vehicles because of reduced cost and complexity. Although there is no torque vectoring or direct yaw moment control in this configuration, considerable handling improvement can be achieved by optimised front/rear torque distribution due to the longitudinal and lateral tire force coupling. In this study, a model predictive control design is presented with a coupled force prediction model for vehicle handling dynamics. The controller optimises the front/rear torque allocation to track the desired handling response and ensure vehicle stability. This study also compensates for actuator delay by incorporating the actuator dynamics into the control design. The performance of the proposed controller is evaluated through software simulations and experimental tests conducted on an electric all-wheel-drive Chevrolet Equinox.



中文翻译:

使用前/后扭矩分配和实验验证的车辆稳定性耦合力预测控制

本文研究了全轮驱动车辆的操纵控制和稳定性,其车轴单独配备了一个连接到开式差速器的电动机。由于降低了成本和复杂性,这可以为电动全轮驱动汽车的大规模生产提供潜在的配置。虽然在这种配置中没有扭矩矢量或直接横摆力矩控制,但由于纵向和横向轮胎力耦合,可以通过优化前/后扭矩分配来实现相当大的操控性改进。在这项研究中,提出了一种模型预测控制设计,其中包含用于车辆操纵动力学的耦合力预测模型。控制器优化前/后扭矩分配以跟踪所需的操纵响应并确保车辆稳定性。该研究还通过将执行器动力学纳入控制设计来补偿执行器延迟。通过在电动全轮驱动雪佛兰 Equinox 上进行的软件模拟和实验测试来评估所提出的控制器的性能。

更新日期:2021-04-08
down
wechat
bug