当前位置: X-MOL 学术Comput. Methods Appl. Mech. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Refined isogeometric analysis for generalized Hermitian eigenproblems
Computer Methods in Applied Mechanics and Engineering ( IF 6.9 ) Pub Date : 2021-04-10 , DOI: 10.1016/j.cma.2021.113823
Ali Hashemian , David Pardo , Victor M. Calo

We use refined isogeometric analysis (rIGA) to solve generalized Hermitian eigenproblems (Ku=λMu). rIGA conserves the desirable properties of maximum-continuity isogeometric analysis (IGA) while it reduces the solution cost by adding zero-continuity basis functions, which decrease the matrix connectivity. As a result, rIGA enriches the approximation space and reduces the interconnection between degrees of freedom. We compare computational costs of rIGA versus those of IGA when employing a Lanczos eigensolver with a shift-and-invert spectral transformation. When all eigenpairs within a given interval [λs,λe] are of interest, we select several shifts σk[λs,λe] using a spectrum slicing technique. For each shift σk, the factorization cost of the spectral transformation matrix KσkM controls the total computational cost of the eigensolution. Several multiplications of the operator matrix (KσkM)1M by vectors follow this factorization. Let p be the polynomial degree of the basis functions and assume that IGA has maximum continuity of p1. When using rIGA, we introduce C0 separators at certain element interfaces to minimize the factorization cost. For this setup, our theoretical estimates predict computational savings to compute a fixed number of eigenpairs of up to O(p2) in the asymptotic regime, that is, large problem sizes. Yet, our numerical tests show that for moderate-size eigenproblems, the total observed computational cost reduction is O(p). In addition, rIGA improves the accuracy of every eigenpair of the first N0 eigenvalues and eigenfunctions, where N0 is the total number of modes of the original maximum-continuity IGA discretization.



中文翻译:

广义Hermitian特征问题的精细等几何分析

我们使用精细的等几何分析(rIGA)解决广义的Hermitian特征问题 ķü=λ中号ü。rIGA保留了最大连续性等几何分析(IGA)的理想属性,同时它通过添加零连续性基函数来降低解决方案成本,从而降低了矩阵连通性。结果,rIGA丰富了近似空间并减少了自由度之间的相互联系。当使用带移位和反转频谱变换的Lanczos本征求解器时,我们比较了rIGA和IGA的计算成本。在给定间隔内所有本征对[λsλË] 很有意思,我们选择几个班次 σķ[λsλË]使用频谱切片技术。对于每个班次σķ,频谱变换矩阵的分解成本 ķ-σķ中号控制本征解的总计算成本。运算符矩阵的几个乘法ķ-σķ中号-1个中号向量的乘积遵循此因式分解。让p 是基函数的多项式度,并假定IGA具有的最大连续性 p-1个。在使用rIGA时,我们介绍C0某些元素接口处的分隔符可最大程度地减少分解成本。对于这种设置,我们的理论估算值可以预测出可节省的计算量,以计算固定数量的特征对Øp2个在渐进状态下,即问题规模大。然而,我们的数值测试表明,对于中等大小的特征问题,观察到的总计算成本降低为Øp。此外,rIGA提高了第一个特征对的每个特征对的准确性ñ0 特征值和特征函数,其中 ñ0 是原始最大连续性IGA离散化的模式总数。

更新日期:2021-04-11
down
wechat
bug