当前位置: X-MOL 学术Int. Commun. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An inclined magnetic field effect on entropy production of non-miscible Newtonian and micropolar fluid in a rectangular conduit
International Communications in Heat and Mass Transfer ( IF 6.4 ) Pub Date : 2021-04-10 , DOI: 10.1016/j.icheatmasstransfer.2021.105266
Pramod Kumar Yadav , Ankit Kumar

The present work concerns with an entropy production of two-phase non-miscible Newtonian and micropolar fluid in a rectangular conduit. In this model, the flow regime is divided in two distinct parts in such a way that Newtonian fluid takes place in the lower portion of the channel whereas non-Newtonian micropolar fluid flows in upper half of the channel. The walls of rectangular channel are kept at constant temperature and a constant pressure gradient is applied at the entrance zone of the rectangular conduit. The no slip boundary conditions are imposed on static walls of the channel and linear velocity, shear stress, microrotational velocity and thermal flux are considered continuous at the interface part of the channel. An analytical solution of the concerned governing partial differential equation which has been reduced in an ordinary differential equation for the considered problem, is obtained. Moreover, the momentum and energy equations are utilized to obtain the entropy production number and Bejan number. However, the impact of numerous hydrodynamic and thermal parameters such as inclination angle parameter, Reynolds number, micropolarity parameter, Hartmann number, viscous dissipation parameter on the fluid flow, thermal exchange, entropy production number and Bejan number are figure out graphically. The findings is verified with the previously estabished results. The present analysis is utilized in petroleum industries.



中文翻译:

倾斜磁场对矩形管道中不可混溶的牛顿流体和微极性流体的熵产生的影响

目前的工作涉及在矩形导管中两相不可混溶的牛顿流体和微极性流体的熵产。在此模型中,流动状态被分为两个不同的部分,以使牛顿流体在通道的下部发生,而非牛顿微极性流体在通道的上半部分流动。矩形通道的壁保持恒温,并且在矩形导管的入口区域施加恒定的压力梯度。在通道的静壁上施加无滑移边界条件,并且线速度,剪切应力,微旋转速度和热通量在通道的界面部分被认为是连续的。获得了一个相关的控制偏微分方程的解析解,该解析式已针对所考虑的问题在普通微分方程中进行了简化。此外,动量和能量方程被用来获得熵产生数和贝扬数。但是,通过图形计算出了许多流体动力学和热学参数,如倾角参数,雷诺数,微极性参数,哈特曼数,粘性耗散参数对流体流动,热交换,熵产生数和贝扬数的影响。该结果已得到先前确定的结果的验证。本分析用于石油工业。动量和能量方程被用来获得熵产生数和贝扬数。但是,通过图形计算出了许多流体动力学和热学参数,如倾角参数,雷诺数,微极性参数,哈特曼数,粘性耗散参数对流体流动,热交换,熵产生数和贝扬数的影响。该结果已得到先前确定的结果的验证。本分析用于石油工业。动量和能量方程被用来获得熵产生数和贝扬数。但是,通过图形计算出了许多流体动力学和热学参数,如倾角参数,雷诺数,微极性参数,哈特曼数,粘性耗散参数对流体流动,热交换,熵产生数和贝扬数的影响。该结果已得到先前确定的结果的验证。本分析用于石油工业。熵产生数和Bejan数以图形方式计算出来。该结果已得到先前确定的结果的验证。本分析用于石油工业。熵产生数和Bejan数以图形方式计算出来。该结果已得到先前确定的结果的验证。本分析用于石油工业。

更新日期:2021-04-11
down
wechat
bug