当前位置: X-MOL 学术Water Resour. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Primary and Net Ecosystem Production in a Large Lake Diagnosed From High‐Resolution Oxygen Measurements
Water Resources Research ( IF 4.6 ) Pub Date : 2021-04-08 , DOI: 10.1029/2020wr029283
Bieito Fernández Castro 1, 2 , Hannah Elisa Chmiel 1 , Camille Minaudo 1 , Shubham Krishna 1 , Pascal Perolo 3 , Serena Rasconi 4 , Alfred Wüest 1, 5
Affiliation  

The rates of gross primary production (GPP), ecosystem respiration (R), and net ecosystem production (NEP) provide quantitative information about the cycling of carbon and energy in aquatic ecosystems. In lakes, metabolic rates are often diagnosed from diel oxygen fluctuations recorded with high‐resolution sondes. This requires that the imprint of ecosystem metabolism can be separated from that of physical processes. Here, we quantified the vertical and temporal variability of the metabolic rates of a deep, large, mesotrophic lake (Lake Geneva, Switzerland–France) by using a 6‐month record (April–October 2019) of high‐frequency, depth‐resolved (0–30 m) dissolved oxygen measurements. Two new alternative methods (in the time and frequency domain) were used to filter low‐frequency basin‐scale internal motions from the oxygen signal. Both methods proved successful and yielded consistent metabolic estimates showing net autotrophy (NEP = GPP − R = 55 mmol m−2 day−1) over the sampling period and depth interval, with GPP (235 mmol m−2 day−1) exceeding R (180 mmol m−2 day−1). They also revealed significant temporal variability, with at least two short‐lived blooms occurring during calm periods, and a vertical partitioning of metabolism, with stronger diel cycles and positive NEP in the upper ∼10 m and negative NEP below, where the diel oxygen signal was dominated by internal motions. The proposed methods expand the range of applicability of the diel oxygen technique to large lakes hosting energetic, low‐frequency internal motions, offering new possibilities for unveiling the rich spatiotemporal metabolism dynamics in these systems.

中文翻译:

根据高分辨率氧测量结果诊断的大湖泊中主要生态系统和净生态系统的生产

初级生产总值(GPP),生态系统呼吸(R)和生态系统净产量(NEP)的速率提供了有关水生生态系统中碳和能量循环的定量信息。在湖泊中,新陈代谢率通常是由高分辨率探测仪记录的狄尔氧气波动来诊断的。这就要求生态系统新陈代谢的烙印可以与物理过程的烙印分开。在这里,我们通过使用6个月的高频率,深度解析记录(2019年4月至2019年10月),量化了一个深,大的中营养湖(日内瓦湖,瑞士-法国)的代谢速率的垂直和时间变化。 (0–30 m)溶解氧测量值。两种新的替代方法(在时域和频域)用于从氧气信号中滤除低频盆地尺度的内部运动。-2 天-1)在采样周期和深度间隔内,GPP(235 mmol m -2 天-1)超过R(180 mmol m -2 天-1)。他们还显示出明显的时间变异性,在平静时期至少发生了两次短时开花,并且新陈代谢发生了垂直分区,迪尔循环更强,上部约10 m的NEP为正,而下部diP的氧信号为负NEP。由内部动作主导。拟议的方法扩大了迪尔氧气技术的适用范围,使其适用于进行充满活力的低频内部运动的大湖,为揭示这些系统中丰富的时空新陈代谢动力学提供了新的可能性。
更新日期:2021-05-03
down
wechat
bug