当前位置: X-MOL 学术Crys. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microgravity as an environment for macromolecular crystallization – an outlook in the era of space stations and commercial space flight
Crystallography Reviews ( IF 2.0 ) Pub Date : 2021-04-08 , DOI: 10.1080/0889311x.2021.1900833
E. H. Snell 1, 2 , J. R. Helliwell 3
Affiliation  

ABSTRACT

In 2005 we reviewed microgravity for macromolecular crystallization, four years after the final flight of the Space Shuttle Orbiter, and five years before the first commercial flight to the International Space Station. Since then, there have been developments in access to space and advances in technology. More regular space flight is becoming a reality, new diffraction data detectors have become available that have both a faster readout and lower noise, a new generation of extremely bright X-ray sources and X-ray free-electron lasers (XFELs) have become available with beam collimation properties well suited geometrically to more perfect protein crystals. Neutron sources, instrumentation, and methods have also advanced greatly for yielding complete structures at room temperature and radiation damage-free. The larger volumes of protein crystals from microgravity can synergise well with these recent neutron developments. Unfortunately, progress in harnessing these new technologies to maximize the benefits seen in microgravity-grown crystals has been patchy and even disappointing. Despite detailed theoretical analysis and key empirical studies, crystallization in microgravity has not yet produced the results that demonstrate its potential. In this updated review we present some of the key lessons learned and show how processes could yet be optimized given these new developments.



中文翻译:

微重力作为高分子结晶的环境–空间站和商业太空飞行时代的展望

摘要

在2005年,我们对微重力进行了大分子结晶研究,这是在航天飞机轨道飞行器最后一次飞行四年之后,以及第一次商业飞行到国际空间站的五年之前。从那时起,在获得空间和技术方面取得了进步。更常规的太空飞行正在成为现实,已经有了新的衍射数据探测器,它们既具有更快的读出速度又具有更低的噪声,新一代的极亮X射线源和X射线自由电子激光器(XFEL)也已问世。光束准直特性在几何上非常适合于更完美的蛋白质晶体。中子源,仪器和方法也取得了很大进步,可以在室温下产生完整的结构并且无辐射损坏。来自微重力的更大体积的蛋白质晶体可以与这些最近的中子发展很好地协同作用。不幸的是,利用这些新技术来最大化微重力生长晶体所带来的好处的进展是零散的,甚至令人失望。尽管进行了详细的理论分析和关键的经验研究,但微重力下的结晶尚未产生证明其潜力的结果。在本更新的综述中,我们将介绍一些重要的经验教训,并说明在这些新发展情况下如何优化流程。尽管进行了详细的理论分析和关键的经验研究,但微重力下的结晶尚未产生证明其潜力的结果。在本更新的综述中,我们将介绍一些重要的经验教训,并说明在这些新发展情况下如何优化流程。尽管进行了详细的理论分析和关键的经验研究,但微重力下的结晶尚未产生证明其潜力的结果。在本更新的综述中,我们将介绍一些重要的经验教训,并说明在这些新发展情况下如何优化流程。

更新日期:2021-05-11
down
wechat
bug