当前位置: X-MOL 学术Proc. Royal Soc. A: Math. Phys. Eng. Sci. › 论文详情
Machine learning-based security-aware spatial modulation for heterogeneous radio-optical networks
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences ( IF 2.741 ) Pub Date : 2021-04-07 , DOI: 10.1098/rspa.2020.0889
Monette H. Khadr, Hany Elgala, Michael Rahaim, Abdallah Khreishah, Moussa Ayyash, Thomas Little

In this article, we propose a physical layer security (PLS) technique, namely security-aware spatial modulation (SA-SM), in a multiple-input multiple-output-based heterogeneous network, wherein both optical wireless communications and radio-frequency (RF) technologies coexist. In SA-SM, the time-domain signal is altered prior to transmission using a key at the physical layer for combating eavesdropping. Unlike conventional PLS techniques, SA-SM does not rely on channel characteristics for securing the information, as its perception is self-imposed, which allows its adoption in radio-optical networks. Additionally, a novel periodical key selection algorithm is proposed. Instead of having multiple keys stored in the nodes, by using off-the-shelf and low-complexity machine learning (ML) methods, including a support vector machine, logistic regression and a single-layer neural network, SA-SM nodes can estimate the used key. Results show that a positive secrecy capacity can be achieved for both the RF and optical links by using 1000 different keys, with a minimal signal-to-noise ratio penalty of less than 5 dB for the legitimate user using SA-SM versus conventional transmission at a bit-error-rate of 10−4. The analysis also includes computational time and classification accuracy evaluation of the various proposed ML techniques using different hardware architectures.



中文翻译:

异构无线电网络中基于机器学习的安全感知空间调制

在本文中,我们提出了一种基于多输入多输出的异构网络中的物理层安全(PLS)技术,即安全感知空间调制(SA-SM),其中光无线通信和射频( RF)技术并存。在SA-SM中,在传输之前使用物理层上的密钥来更改时域信号,以防止窃听。与传统的PLS技术不同,由于SA-SM的感知是自我强加的,因此它不依赖于信道特性来保护信息,这使其可以在无线电网络中采用。另外,提出了一种新颖的周期性密钥选择算法。通过使用现成的,低复杂度的机器学习(ML)方法(包括支持向量机)来代替在节点中存储多个密钥,通过逻辑回归和单层神经网络,SA-SM节点可以估计使用的密钥。结果表明,通过使用1000个不同的密钥,可以为RF和光链路实现正的保密容量,对于使用SA-SM的合法用户,与传统的传输方式相比,使用SA-SM的最小信噪比损失小于5 dB。误码率为10−4。分析还包括使用不同的硬件体系结构对各种提议的ML技术的计算时间和分类准确性评估。

更新日期:2021-04-08
全部期刊列表>>
2021中国学者有奖调研
JACS
材料科学跨学科高质量前沿研究
中国作者高影响力研究精选
虚拟特刊
屿渡论文,编辑服务
何川
清华大学
郭维
上海中医药大学
华东师范大学
北京大学许言
楚甲祥
西湖石航
上海交大
北理工
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
南开大学
张韶光
华辉
天合科研
x-mol收录
试剂库存
down
wechat
bug