当前位置: X-MOL 学术Sci. Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High–load capacity origami transformable wheel
Science Robotics ( IF 25.0 ) Pub Date : 2021-04-07 , DOI: 10.1126/scirobotics.abe0201
Dae-Young Lee 1, 2 , Jae-Kyeong Kim 1 , Chang-Young Sohn 3 , Jeong-Mu Heo 3 , Kyu-Jin Cho 1
Affiliation  

Composite membrane origami has been an efficient and effective method for constructing transformable mechanisms while considerably simplifying their design, fabrication, and assembly; however, its limited load-bearing capability has restricted its application potential. With respect to wheel design, membrane origami offers unique benefits compared with its conventional counterparts, such as simple fabrication, high weight-to-payload ratio, and large shape variation, enabling softness and flexibility in a kinematic mechanism that neutralizes joint distortion and absorbs shocks from the ground. Here, we report a transformable wheel based on membrane origami capable of bearing more than a 10-kilonewton load. To achieve a high payload, we adopt a thick membrane as an essential element and introduce a wireframe design rule for thick membrane accommodation. An increase in the thickness can cause a geometric conflict for the facet and the membrane, but the excessive strain energy accumulation is unique to the thickness increase of the membrane. Thus, the design rules for accommodating membrane thickness aim to address both geometric and physical characteristics, and these rules are applied to basic origami patterns to obtain the desired wheel shapes and transformation. The capability of the resulting wheel applied to a passenger vehicle and validated through a field test. Our study shows that membrane origami can be used for high-payload applications.



中文翻译:

高承载能力折纸变形轮

复合膜折纸一直是构建可变形机构的有效方法,同时大大简化了它们的设计、制造和组装;然而,其有限的承载能力限制了其应用潜力。在车轮设计方面,薄膜折纸与传统折纸相比具有独特的优势,例如制造简单、重量与有效载荷比高、形状变化大,使运动机构具有柔软性和灵活性,可以抵消关节变形并吸收冲击从地面。在这里,我们报告了一种基于膜折纸的可变形轮,能够承受超过 10 千牛顿的载荷。为了实现高负载,我们采用厚膜作为基本元素,并引入了厚膜适应的线框设计规则。厚度的增加会导致面和膜的几何冲突,但过度的应变能积累是膜厚度增加所独有的。因此,适应膜厚度的设计规则旨在解决几何和物理特性,并将这些规则应用于基本折纸图案以获得所需的轮子形状和变形。所得车轮应用于乘用车并通过现场测试验证的能力。我们的研究表明,膜折纸可用于高负载应用。但过度的应变能积累是膜厚度增加所独有的。因此,适应膜厚度的设计规则旨在解决几何和物理特性,并将这些规则应用于基本折纸图案以获得所需的轮子形状和变形。所得车轮应用于乘用车并通过现场测试验证的能力。我们的研究表明,膜折纸可用于高负载应用。但过度的应变能积累是膜厚度增加所独有的。因此,适应膜厚度的设计规则旨在解决几何和物理特性,并将这些规则应用于基本折纸图案以获得所需的轮子形状和变形。所得车轮应用于乘用车并通过现场测试验证的能力。我们的研究表明,膜折纸可用于高负载应用。所得车轮应用于乘用车并通过现场测试验证的能力。我们的研究表明,膜折纸可用于高负载应用。所得车轮应用于乘用车并通过现场测试验证的能力。我们的研究表明,膜折纸可用于高负载应用。

更新日期:2021-04-08
down
wechat
bug