当前位置: X-MOL 学术J. Process Control › 论文详情
Semi-infinite programming yields optimal disturbance model for offset-free nonlinear model predictive control
Journal of Process Control ( IF 3.624 ) Pub Date : 2021-04-07 , DOI: 10.1016/j.jprocont.2021.03.005
Adrian Caspari, Hatim Djelassi, Adel Mhamdi, Lorenz T. Biegler, Alexander Mitsos

Offset-free nonlinear model predictive control (NMPC) can eliminate the tracking offset associated with the presence of plant-model mismatch or other persistent disturbances by augmenting the plant model with disturbances and employing an observer to estimate both the states and disturbances. Despite their importance, a systematic approach for the generation of suitable disturbance models is not available.

We propose an optimization-based method to generate disturbance models based on sufficient observability conditions and generalize the theory of offset-free NMPC by allowing for (i) more measured variables than controlled variables and (ii) unmeasured controlled variables. Based on the sufficient conditions, we formulate a generalized semi-infinite program, which we reformulate and solve as a simpler semi-infinite program using a discretization algorithm. The solution furnishes the optimal disturbance model, which maximizes the set of those state, manipulated variable, and disturbance realizations, for which a sufficient observability condition is satisfied. The disturbance model is generated offline and can be used online for offset-free NMPC.

We apply the approach using three case studies ranging from small scale chemical reactor cases to a medium scale polymerization reactor case. The results demonstrate the validity and usefulness of the generalized theory and show that the model generation approach successfully finds suitable disturbance models for offset-free NMPC.



中文翻译:

半无限规划产生无干扰非线性模型预测控制的最优扰动模型

无偏移非线性模型预测控制(NMPC)可以通过用干扰增加工厂模型并雇用观察者来估计状态和干扰,从而消除与工厂模型不匹配或其他持续性干扰相关的跟踪偏移。尽管它们很重要,但尚无用于生成合适干扰模型的系统方法。

我们提出了一种基于优化的方法来基于足够的可观察性条件生成干扰模型,并通过允许(i)比控制变量更多的测量变量和(ii)未测量的控制变量来推广无偏移NMPC的理论。在充分条件的基础上,我们制定了一个广义的半无限程序,使用离散化算法将其重新简化并求解为一个更简单的半无限程序。该解决方案提供了最佳干扰模型,该模型使状态,操纵变量和干扰实现的集合最大化,为此满足了充分的可观察性条件。干扰模型是离线生成的,可以在线用于无偏移的NMPC。

我们使用从小型化学反应器案例到中型聚合反应器案例的三个案例研究来应用该方法。结果证明了广义理论的有效性和实用性,并表明该模型生成方法成功地找到了适用于无偏移NMPC的扰动模型。

更新日期:2021-04-08
全部期刊列表>>
JACS
材料科学跨学科高质量前沿研究
中国作者高影响力研究精选
虚拟特刊
亚洲大洋洲地球科学
NPJ欢迎投稿
自然科研论文编辑
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
阿拉丁试剂right
屿渡论文,编辑服务
何川
清华大学
郭维
陈永胜
上海中医药大学
华东师范大学
张夏衡
史大永
楚甲祥
西湖石航
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
南开大学
张韶光
华辉
天合科研
x-mol收录
试剂库存
down
wechat
bug