当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Demonstration of the trapped-ion quantum CCD computer architecture
Nature ( IF 50.5 ) Pub Date : 2021-04-07 , DOI: 10.1038/s41586-021-03318-4
J M Pino 1 , J M Dreiling 1 , C Figgatt 1 , J P Gaebler 1 , S A Moses 1 , M S Allman 1 , C H Baldwin 1 , M Foss-Feig 1 , D Hayes 1 , K Mayer 1 , C Ryan-Anderson 1 , B Neyenhuis 1
Affiliation  

The trapped-ion quantum charge-coupled device (QCCD) proposal1,2 lays out a blueprint for a universal quantum computer that uses mobile ions as qubits. Analogous to a charge-coupled device (CCD) camera, which stores and processes imaging information as movable electrical charges in coupled pixels, a QCCD computer stores quantum information in the internal state of electrically charged ions that are transported between different processing zones using dynamic electric fields. The promise of the QCCD architecture is to maintain the low error rates demonstrated in small trapped-ion experiments3,4,5 by limiting the quantum interactions to multiple small ion crystals, then physically splitting and rearranging the constituent ions of these crystals into new crystals, where further interactions occur. This approach leverages transport timescales that are fast relative to the coherence times of the qubits, the insensitivity of the qubit states of the ion to the electric fields used for transport, and the low crosstalk afforded by spatially separated crystals. However, engineering a machine capable of executing these operations across multiple interaction zones with low error introduces many difficulties, which have slowed progress in scaling this architecture to larger qubit numbers. Here we use a cryogenic surface trap to integrate all necessary elements of the QCCD architecture—a scalable trap design, parallel interaction zones and fast ion transport—into a programmable trapped-ion quantum computer that has a system performance consistent with the low error rates achieved in the individual ion crystals. We apply this approach to realize a teleported CNOT gate using mid-circuit measurement6, negligible crosstalk error and a quantum volume7 of 26 = 64. These results demonstrate that the QCCD architecture provides a viable path towards high-performance quantum computers.



中文翻译:

俘获离子量子 CCD 计算机体系结构演示

俘获离子量子电荷耦合器件 (QCCD) 提案1,2为使用移动离子作为量子位的通用量子计算机制定了蓝图。类似于电荷耦合器件 (CCD) 相机,它将成像信息存储和处理为耦合像素中的可移动电荷,QCCD 计算机将量子信息存储在带电离子的内部状态中,这些离子使用动态电在不同处理区域之间传输领域。QCCD 架构的承诺是保持在小型俘获离子实验中证明的低错误率3,4,5通过将量子相互作用限制在多个小离子晶体上,然后将这些晶体的组成离子物理分裂并重新排列成新的晶体,从而发生进一步的相互作用。这种方法利用了相对于量子位的相干时间快的传输时间尺度、离子的量子位状态对用于传输的电场的不敏感性,以及空间分离的晶体提供的低串扰。然而,设计一台能够跨多个交互区域以低误差执行这些操作的机器会带来许多困难,这减缓了将这种架构扩展到更大量子比特数的进展。在这里,我们使用低温表面陷阱来集成 QCCD 架构的所有必要元素——可扩展的陷阱设计,平行相互作用区和快速离子传输——进入可编程的离子阱量子计算机,该计算机的系统性能与单个离子晶体中实现的低错误率一致。我们应用这种方法使用中路测量来实现传送的 CNOT 门如图6所示,串扰误差可忽略不计,量子体积7为 2 6  = 64。这些结果表明,QCCD 架构为高性能量子计算机提供了一条可行的途径。

更新日期:2021-04-07
down
wechat
bug