当前位置: X-MOL 学术Nature › 论文详情
Leading hadronic contribution to the muon magnetic moment from lattice QCD
Nature ( IF 42.778 ) Pub Date : 2021-04-07 , DOI: 10.1038/s41586-021-03418-1
Sz. Borsanyi, Z. Fodor, J. N. Guenther, C. Hoelbling, S. D. Katz, L. Lellouch, T. Lippert, K. Miura, L. Parato, K. K. Szabo, F. Stokes, B. C. Toth, Cs. Torok, L. Varnhorst

The standard model of particle physics describes the vast majority of experiments and observations involving elementary particles. Any deviation from its predictions would be a sign of new, fundamental physics. One long-standing discrepancy concerns the anomalous magnetic moment of the muon, a measure of the magnetic field surrounding that particle. Standard-model predictions1 exhibit disagreement with measurements2 that is tightly scattered around 3.7 standard deviations. Today, theoretical and measurement errors are comparable; however, ongoing and planned experiments aim to reduce the measurement error by a factor of four. Theoretically, the dominant source of error is the leading-order hadronic vacuum polarization (LO-HVP) contribution. For the upcoming measurements, it is essential to evaluate the prediction for this contribution with independent methods and to reduce its uncertainties. The most precise, model-independent determinations so far rely on dispersive techniques, combined with measurements of the cross-section of electron–positron annihilation into hadrons3,4,5,6. To eliminate our reliance on these experiments, here we use ab initio quantum chromodynamics (QCD) and quantum electrodynamics simulations to compute the LO-HVP contribution. We reach sufficient precision to discriminate between the measurement of the anomalous magnetic moment of the muon and the predictions of dispersive methods. Our result favours the experimentally measured value over those obtained using the dispersion relation. Moreover, the methods used and developed in this work will enable further increased precision as more powerful computers become available.



中文翻译:

晶格QCD对介子矩的强子强子贡献。

粒子物理学的标准模型描述了涉及基本粒子的绝大多数实验和观察。与其预言的任何偏离都将是新的基础物理学的标志。一个长期存在的差异与μ子的异常磁矩有关,磁子是围绕该粒子的磁场的量度。标准模型预测1与测量结果不一致2紧密地散布在3.7个标准偏差附近。如今,理论误差和测量误差是可比的。但是,正在进行和计划中的实验旨在将测量误差降低四分之一。从理论上讲,主要的误差源是前导强子真空极化(LO-HVP)贡献。对于即将到来的测量,必须使用独立的方法评估这一贡献的预测并减少其不确定性。迄今为止,最精确的,与模型无关的确定依赖于色散技术,并结合对电子-正电子had没到强子中的横截面的测量3,4,5,6。为了消除对这些实验的依赖,这里我们使用从头算量子色动力学(QCD)和量子电动力学模拟来计算LO-HVP贡献。我们达到了足够的精度来区分μ子的异常磁矩的测量和色散方法的预测。我们的结果比使用色散关系获得的结果更偏爱实验测量值。此外,随着更强大的计算机的出现,在这项工作中使用和开发的方法将使精度进一步提高。

更新日期:2021-04-08
全部期刊列表>>
JACS
材料科学跨学科高质量前沿研究
中国作者高影响力研究精选
虚拟特刊
亚洲大洋洲地球科学
NPJ欢迎投稿
自然科研论文编辑
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
阿拉丁试剂right
屿渡论文,编辑服务
何川
清华大学
郭维
陈永胜
上海中医药大学
华东师范大学
张夏衡
史大永
楚甲祥
西湖石航
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
南开大学
张韶光
华辉
天合科研
x-mol收录
试剂库存
down
wechat
bug