当前位置: X-MOL 学术Publ. Astron. Soc. Jpn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The origins and impact of outflow from super-Eddington flow
Publications of the Astronomical Society of Japan ( IF 2.3 ) Pub Date : 2021-01-25 , DOI: 10.1093/pasj/psab011
Takaaki Kitaki 1 , Shin Mineshige 1 , Ken Ohsuga 2 , Tomohisa Kawashima 3
Affiliation  

It is widely believed that super-Eddington accretion flow can produce powerful outflow, but where does this originate and how much mass and energy are carried away in which directions? To answer these questions, we perform a new large-box, two-dimensional radiation hydrodynamic simulation, paying special attention lest the results should depend on the adopted initial and boundary conditions. We achieve a quasi-steady state at an unprecedentedly large range, r = 2–600rS (with rS being the Schwarzschild radius), from the black hole. The accretion rate onto the central 10 M⊙ black hole is $\dot{M}_{\rm BH} \sim 180 L_{\rm Edd}/c^{2}$, whereas the mass outflow rate is ${\dot{M}}_{\rm outflow} \sim 24 L_{\rm Edd}/c^2$ (where LEdd and c are the Eddington luminosity and the speed of light, respectively). The ratio ${\dot{M}}_{\rm outflow}/{\dot{M}}_{\rm BH} \sim 0.14$ is much less than previously reported. By careful inspection we find that most of the outflowing gas reaching the outer boundary originates from the region at R ≲ 140rS, while gas at 140–230rS forms failed outflow. Therefore, significant outflow occurs inside the trapping radius ∼450rS. The mechanical energy flux (or mass flux) reaches its maximum in the direction of ∼15° (∼80°) from the rotation axis. The total mechanical luminosity is Lmec ∼ 0.16LEdd, while the isotropic X-ray luminosity varies from $L_{\rm X}^{\rm ISO}\sim 2.9 L_{\rm Edd}$ (for a face-on observer) to ∼2.1LEdd (for a nearly edge-on observer). The power ratio is $L_{\rm mec}/L_{\rm X}^{\rm ISO}\sim 0.05$–0.08, in good agreement with observations of ultra-luminous X-ray sources surrounded by optical nebulae.

中文翻译:

超爱丁顿流流出的起源及影响

人们普遍认为,超爱丁顿吸积流可以产生强大的外流,但这是从哪里产生的,有多少质量和能量被带走到哪个方向呢?为了回答这些问题,我们进行了一个新的大型二维辐射流体动力学模拟,特别注意不要让结果依赖于所采用的初始条件和边界条件。我们在前所未有的大范围内实现了准稳态,r = 2–600rS(rS 是史瓦西半径),来自黑洞。中心 10 M⊙ 黑洞的吸积率为 $\dot{M}_{\rm BH} \sim 180 L_{\rm Edd}/c^{2}$,而质量流出率为 ${\ dot{M}}_{\rm outflow} \sim 24 L_{\rm Edd}/c^2$(其中 LEdd 和 c 分别是爱丁顿光度和光速)。比率 ${\dot{M}}_{\rm outflow}/{\dot{M}}_{\rm BH} \sim 0.14$ 远低于之前报道的。仔细检查发现,大部分到达外边界的流出气体来自R≲140rS区域,而140-230rS的气体形成失败流出。因此,在圈闭半径~450rS 内发生显着流出。机械能通量(或质量通量)在距旋转轴~15°(~80°)的方向上达到最大值。总机械光度为 Lmec ∼ 0.16LEdd,而各向同性 X 射线光度变化范围为 $L_{\rm X}^{\rm ISO}\sim 2.9 L_{\rm Edd}$(对于正面观察者)到~2.1LEDd(对于一个近乎边缘的观察者)。功率比为$L_{\rm mec}/L_{\rm X}^{\rm ISO}\sim 0.05$–0.08,与光学星云包围的超高亮度X射线源的观测结果非常吻合。
更新日期:2021-01-25
down
wechat
bug