当前位置: X-MOL 学术J. Geophys. Res. Space Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
PATCH: Particle Arrival Time Correlation for Heliophysics
Journal of Geophysical Research: Space Physics ( IF 2.6 ) Pub Date : 2021-04-05 , DOI: 10.1029/2020ja028940
J. L. Verniero 1 , G. G. Howes 2 , D.E. Stewart 3 , K.G. Klein 4
Affiliation  

The ability to understand the fundamental nature of the physics that governs the heliosphere requires spacecraft instrumentation to measure energy transfer at kinetic scales. This translates to a time cadence resolving the proton kinetic timescales, typically of the order of the proton gyrofrequency. The downlinked survey‐mode data from modern spacecraft are often much lower resolution than this criterion, meaning that the higher resolution, burst‐mode data must be captured to study an event at kinetic time scales. Telemetry restrictions, however, prohibit a sizable fraction of this burst‐mode data from being downlinked to the ground. The field‐particle correlation (FPC) technique can quantify kinetic‐scale energy transfer between electromagnetic fields and charged particles and identify the mechanisms responsible for mediating the transfer. In this study, we adapt the FPC technique for calculating wave‐particle energy transfer onboard modern spacecraft using time‐tagged particle counts simultaneous with electromagnetic field measurements. The newly developed procedure, called Particle Arrival Time Correlation for Heliophysics (PATCH), is tested using synthetic spacecraft data, where output from a gyrokinetic plasma turbulence simulation was downsampled to Parker Solar Probe (PSP) energy‐angle resolution. We assess the ability of the PATCH algorithm to recover the qualitative and quantitative features of the resulting velocity‐space signatures, such as ion‐Landau damping, that can be used to distinguish different kinetic mechanisms of particle energization. Ultimately, we demonstrate a proof‐of‐concept that the PATCH method could enable calculations of onboard wave‐particle correlations, with the intent of enhancing spacecraft data return by several orders of magnitude.

中文翻译:

PATCH:日射物理学的粒子到达时间相关

要了解控制太阳系物理学基本性质的能力,就需要航天器仪器来测量动力学尺度下的能量传递。这转化为解决了质子动力学时标的时间节奏,质子动力学时标通常约为质子回旋频率的量级。来自现代航天器的下行链路勘测模式数据通常比该标准低得多的分辨率,这意味着必须捕获较高分辨率的突发模式数据才能研究动力学时标上的事件。但是,遥测技术的限制禁止该突发模式数据的相当大一部分被下行传输到地面。场粒子关联(FPC)技术可以量化电磁场和带电粒子之间的动能级能量传递,并确定介导传递的机制。在这项研究中,我们采用FPC技术,利用带有时间标记的粒子计数和电磁场测量来计算现代航天器上的波粒子能量传递。使用合成的航天器数据测试了新开发的程序,称为“太阳物理粒子到达时间相关性”(PATCH),其中将旋回运动等离子体湍流模拟的输出下采样至Parker太阳探测器(PSP)能量角分辨率。我们评估了PATCH算法恢复所产生的速度-空间特征的定性和定量特征的能力,例如离子-兰道阻尼,这些特征可用于区分粒子激发的不同动力学机制。最终,
更新日期:2021-05-10
down
wechat
bug