当前位置: X-MOL 学术Eng. Fract. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic interfacial crack propagation and kinking in sandwich panels
Engineering Fracture Mechanics ( IF 4.7 ) Pub Date : 2021-04-05 , DOI: 10.1016/j.engfracmech.2021.107698
Itay Odessa , Yeoshua Frostig , Oded Rabinovitch

The dynamic interfacial crack propagation and crack kinking phenomena in sandwich panels are studied. The paper derives an analytical approach based on the Extended High-Order Sandwich Panel Theory (EHSAPT) and a cohesive interface modeling. The mathematical modeling of the panel makes a distinction between the face sheets and the core. The core is further divided into two bodies aiming to allow the nucleation of a shear crack in the core or the kinking of a core-face sheet crack into the core. The panel therefore includes four layers that are interconnected through three interfaces. The First-Order Shear Deformation Theory (FSDT) is adopted for the two face sheets and the EHSAPT is applied to the two core layers. Translational, rotational, and high order inertial effects are considered in all components. A geometrical nonlinear behavior with linear elastic laws is adopted for the face sheets while the core layers use linear kinematic relations and linear constitutive laws. The interfaces use nonlinear cohesive laws to model the dynamic nucleation, propagation, and kinking of cracks. The dynamic model is used for a numerical study of sandwich panels subjected to three point bending and end shortening loading conditions. The study explores the coupling of the crack propagation with the dynamic response. A comparison of the dynamic results with their static counterparts further explains the physical response of the sandwich panel and the dynamic characteristics of its failure mechanism.



中文翻译:

夹芯板的动态界面裂纹扩展和弯折

研究了夹芯板的动态界面裂纹扩展和弯折现象。本文推导了基于扩展高阶夹心板理论(EHSAPT)和内聚界面建模的分析方法。面板的数学建模可以区分面板和型芯。岩心进一步分为两个物体,目的是允许岩心中的剪切裂纹成核,或者使岩心-面片裂纹扭结到岩心中。因此,面板包括通过三个接口互连的四层。一阶剪切变形理论(FSDT)被用于两个面板,而EHSAPT被应用于两个核心层。在所有组件中都考虑了平移,旋转和高阶惯性效应。面板采用具有线性弹性定律的几何非线性行为,而核心层则使用线性运动学关系和线性本构律。这些界面使用非线性内聚定律对裂纹的动态形核,传播和扭结进行建模。该动力学模型用于夹芯板在三点弯曲和末端缩短载荷条件下的数值研究。研究探索了裂纹扩展与动力响应的耦合。将动态结果与静态结果进行比较,进一步解释了夹芯板的物理响应及其破坏机理的动态特性。这些界面使用非线性内聚定律对裂纹的动态形核,传播和扭结进行建模。该动力学模型用于夹芯板在三点弯曲和端部缩短载荷条件下的数值研究。研究探索了裂纹扩展与动力响应的耦合。将动态结果与静态结果进行比较,进一步解释了夹芯板的物理响应及其破坏机理的动态特性。这些界面使用非线性内聚定律对裂纹的动态形核,传播和扭结进行建模。该动力学模型用于夹芯板在三点弯曲和端部缩短载荷条件下的数值研究。研究探索了裂纹扩展与动力响应的耦合。将动态结果与静态结果进行比较,进一步解释了夹芯板的物理响应及其破坏机理的动态特性。

更新日期:2021-04-15
down
wechat
bug