当前位置: X-MOL 学术Shock Waves › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Drag reduction in transonic shock-wave/boundary-layer interaction using porous medium: a computational study
Shock Waves ( IF 1.7 ) Pub Date : 2021-04-04 , DOI: 10.1007/s00193-021-01009-7
S. Roy , J. P. S. Sandhu , S. Ghosh

A computational study has been carried out to assess the effectiveness of a porous medium as a passive control device suitable for reducing the drag in a normal-shock-wave/boundary-layer interaction at transonic speeds with a view toward application in aircraft wings. Reduction in overall drag is achieved via recirculation inside the porous medium, which primarily weakens the shock structure and hence reduces the wave drag. The study has been carried out for a Mach 1.3 normal-shock-wave/boundary-layer interaction on a flat plate in the presence of a porous medium beneath the region of interaction. The computations are performed as steady-state RANS calculations using Menter’s SST \(k-\omega /k-\epsilon \) model for turbulence closure. A parametric study that investigates the dependency of the effectiveness of control on dimensions of the cavity (length and depth), relative position of the cavity, and porosity of the medium has been carried out. It is observed that the change in overall drag is pronounced for parameters which result in significant changes to the size of the lambda-shock structure, such as the length of the cavity upstream of the inviscid shock location. Among the parameters investigated, porosity is seen to strongly affect the boundary-layer properties, with increase in porosity resulting in higher viscous drag.



中文翻译:

使用多孔介质的跨音速冲击波/边界层相互作用的减阻作用:计算研究

已经进行了一项计算研究,以评估多孔介质作为一种被动控制装置的有效性,该被动控制装置适用于减小跨音速下正常冲击波/边界层相互作用中的阻力,从而有望应用于飞机机翼。总阻力的减少是通过多孔介质内部的再循环实现的,这主要是削弱了冲击结构,从而减小了波浪阻力。已经在相互作用区域下方存在多孔介质的情况下,对平板上的1.3马赫正弦波/边界层相互作用进行了研究。使用Menter的SST \(k- \ omega / k- \ epsilon \)作为稳态RANS计算进行计算湍流闭合模型。已经进行了参数研究,研究了控制有效性对空腔尺寸(长度和深度),空腔的相对位置以及介质孔隙率的依赖性。可以看出,对于参数而言总阻力的变化是明显的,这些参数导致λ-冲击结构的尺寸发生显着变化,例如无粘性冲击位置上游腔的长度。在所研究的参数中,孔隙度强烈影响边界层性能,孔隙度增加会导致更高的粘性阻力。

更新日期:2021-04-04
down
wechat
bug