当前位置: X-MOL 学术Int. J. Automot. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Regenerative Braking Control Strategy of Electric Vehicles Based on Braking Stability Requirements
International Journal of Automotive Technology ( IF 1.5 ) Pub Date : 2021-04-02 , DOI: 10.1007/s12239-021-0043-1
Jiang Biao , Zhang Xiangwen , Wang Yangxiong , Hu Wenchao

Electric vehicles are effective way to solve energy and environmental problems, but the promotion and application of electric vehicles are suppressed by their limited endurance range seriously. The regenerative braking technology is an important method to increase the endurance range of the electric vehicle. During the braking process, the kinetic energy of the electric vehicle can be converted into electric energy and stored in the energy source device with the regenerative braking system, so the endurance range of the electric vehicle can be increased accordingly. In order to increase the efficiency of energy recovery, a regenerative braking strategy with the optimization distribution algorithm is proposed in this paper, and the braking forces of the front and rear axles are distributed optimally with variable ratios based on the braking strength. With the optimal braking force distribution ratio and related constraint conditions, the regenerative braking control strategy was designed to meet the braking stability and the maximum braking energy recovery. And then a simulation model of the braking control strategy was built with MATLAB/Simulink software, and the simulation tests on UDDS and NEDC cycle conditions were done to verify the effectiveness of the designed regenerative braking control strategy. Compared with the control strategy of ADVISOR software, the braking energy recovery efficiency was improved more than 51.9 % while maintaining the braking stability.



中文翻译:

基于制动稳定性要求的电动汽车再生制动控制策略

电动汽车是解决能源和环境问题的有效途径,但是由于其有限的续航里程,电动汽车的推广和应用受到了严重的限制。再生制动技术是增加电动汽车续航里程的重要方法。在制动过程中,电动汽车的动能可以转化为电能并通过再生制动系统存储在能量源装置中,因此可以相应地增加电动汽车的续航里程。为了提高能量回收的效率,本文提出了一种带有优化分配算法的再生制动策略,前桥和后桥的制动力根据制动力以可变的比率最佳地分配。在具有最佳制动力分配比和相关约束条件的情况下,设计了再生制动控制策略以满足制动稳定性和最大制动能量回收率。然后使用MATLAB / Simulink软件建立了制动控制策略的仿真模型,并在UDDS和NEDC循环条件下进行了仿真测试,以验证所设计的再生制动控制策略的有效性。与ADVISOR软件的控制策略相比,在保持制动稳定性的同时,制动能量回收效率提高了51.9%以上。再生制动控制策略旨在满足制动稳定性和最大制动能量回收要求。然后使用MATLAB / Simulink软件建立了制动控制策略的仿真模型,并在UDDS和NEDC循环条件下进行了仿真测试,以验证所设计的再生制动控制策略的有效性。与ADVISOR软件的控制策略相比,在保持制动稳定性的同时,制动能量回收效率提高了51.9%以上。再生制动控制策略旨在满足制动稳定性和最大制动能量回收要求。然后使用MATLAB / Simulink软件建立了制动控制策略的仿真模型,并在UDDS和NEDC循环条件下进行了仿真测试,以验证所设计的再生制动控制策略的有效性。与ADVISOR软件的控制策略相比,在保持制动稳定性的同时,制动能量回收效率提高了51.9%以上。并在UDDS和NEDC循环条件下进行了仿真测试,以验证所设计的再生制动控制策略的有效性。与ADVISOR软件的控制策略相比,在保持制动稳定性的同时,制动能量回收效率提高了51.9%以上。并在UDDS和NEDC循环条件下进行了仿真测试,以验证所设计的再生制动控制策略的有效性。与ADVISOR软件的控制策略相比,在保持制动稳定性的同时,制动能量回收效率提高了51.9%以上。

更新日期:2021-04-04
down
wechat
bug