当前位置: X-MOL 学术Adv. Theory Simul. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the Molecular Mechanism of a Photo‐Responsive Phase Change Memory
Advanced Theory and Simulations ( IF 2.9 ) Pub Date : 2021-04-02 , DOI: 10.1002/adts.202100017
Saeed Amirjalayer 1
Affiliation  

Inducing well‐defined transitions by external stimuli between different states of matter is at the core of responsive functional materials. Using light to interconvert between states with distinct and externally readable features such as optical properties, these photo‐responsive phase change materials (PCMs) are ideal candidates for photonic applications. In this context, correlating macroscopic phenomena with properties at the atomistic level is crucial to systematically tailor the performance of PCMs. In particular, to establish a bottom‐up strategy to engineer PCMs based on molecular building units, a detailed understanding of the dynamic properties is needed. Therefore, an atomistic study is reported capturing the structural evolution during the light‐induced phase transition of a tetra‐(azobenzene)‐methane based PCM. This out‐of‐equilibrium dynamics is accurately represented by an atomistic potential, developed using a population swapping genetic algorithm. The molecular mechanism of the phase transition is deciphered and the refractive index of the periodic matrix is investigated. Due to an interplay of structural rigidity and flexibility, already small structural rearrangements lead to alteration of the optical properties, which is fundamental to ensure high data‐transfer rates. By correlating molecular properties with the resulting functionality, the reported work provides an important step towards in silico engineering of photo‐responsive PCMs.

中文翻译:

光响应相变记忆的分子机理

响应性功能材料的核心是通过外部刺激在不同物质状态之间引发明确定义的跃迁。这些光响应相变材料(PCM)使用光在具有独特和外部可读特征(例如光学特性)的状态之间进行转换,是光子应用的理想选择。在这种情况下,将宏观现象与原子级的属性相关联对于系统地调整PCM的性能至关重要。特别是,要建立一种基于分子构建单元对PCM进行工程设计的自下而上的策略,需要对动力学特性有详细的了解。因此,据报道进行了一项原子研究,捕获了基于四(偶氮苯)-甲烷的PCM在光诱导的相变过程中的结构演变。这种不平衡动力学可以通过使用种群交换遗传算法开发的原子势精确表示。阐明了相变的分子机理,并研究了周期矩阵的折射率。由于结构刚性和柔韧性的相互作用,已经很小的结构重排导致光学特性的改变,这对于确保高数据传输率至关重要。通过将分子性质与所产生的功能性联系起来,所报道的工作为光响应性PCM的计算机工程设计迈出了重要的一步。阐明了相变的分子机理,并研究了周期矩阵的折射率。由于结构刚性和柔韧性的相互作用,已经很小的结构重排导致光学特性的改变,这对于确保高数据传输率至关重要。通过将分子性质与所产生的功能性联系起来,所报道的工作为光响应性PCM的计算机工程设计迈出了重要的一步。阐明了相变的分子机理,并研究了周期矩阵的折射率。由于结构刚性和柔韧性的相互作用,已经很小的结构重排导致光学特性的改变,这对于确保高数据传输率至关重要。通过将分子性质与所产生的功能性联系起来,所报道的工作为光响应性PCM的计算机工程设计迈出了重要的一步。
更新日期:2021-05-05
down
wechat
bug