当前位置: X-MOL 学术IEEE Trans. Intell. Transp. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Three-Dimensional Object Co-Localization From Mobile LiDAR Point Clouds
IEEE Transactions on Intelligent Transportation Systems ( IF 7.9 ) Pub Date : 2021-02-18 , DOI: 10.1109/tits.2021.3057374
Wenzhong Guo , Jiawei Chen , Weipeng Wang , Huan Luo , Shiping Wang

Recently, 3D deep learning technologies require a large amount of supervised 3D point-cloud data to learn statistical models for various ITS-related tasks, e.g. object classification, object detection, object segmentation, etc. However, manually annotating 3D point-cloud data is time-consuming and labor-intensive. Therefore, this paper aims at co-locating 3D objects from mobile LiDAR point clouds without any help of supervised training data. To realize it, we propose a new framework to implement 3D object co-localization for automatically extracting the objects of the same category from different point-cloud scenes. Specifically, to search and exploit the co-information from objects in different point-cloud scenes, we formulate a 3D object co-localization problem as a maximal subgraph matching problem. During the graph construction procedure, to handle the inconsistent representation of objects in different scenes, we propose a multi-scale clustering method to represent objects by a pyramid structure. In addition, because the maximal subgraph matching problem is NP-hard, we propose a stochastic search algorithm to generate the co-localization results. Extensive experiments on the point-cloud data collected by the Reigl VMX450 mobile LiDAR system demonstrate the promising performance of the proposed framework.
更新日期:2021-04-02
down
wechat
bug