当前位置: X-MOL 学术Astrophys. Space Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Charged strange star in f ( R , T ) $f(R,T)$ gravity with linear equation of state
Astrophysics and Space Science ( IF 1.8 ) Pub Date : 2021-04-02 , DOI: 10.1007/s10509-021-03943-5
Pramit Rej , Piyali Bhar

Our present study involves the strange stars model in the framework of \(f(R,T)\) theory of gravitation. We have taken a linear function of the Ricci scalar \(R\) and the trace \(T\) of the stress-energy tensor \(T_{\mu\nu}\) for the expression of \(f(R,T)\), i.e., \(f(R,T)=R+ 2 \gamma T \) to obtain the proposed model, where \(\gamma \) is a coupling constant. Moreover, to solve the hydrostatic equilibrium equations, we consider a linear equation of state between the radial pressure \(p_{r}\) and matter density \(\rho \) as \(p_{r}=\alpha \rho -\beta \), where \(\alpha \) and \(\beta \) are some positive constants, Both \(\alpha\), \(\beta\) depend on coupling constant \(\gamma \) which have been also depicted in this paper. By employing the Krori-Barua ansatz already reported in the literature (J. Phys. A, Math. Gen. 8:508, 1975) we have found the solutions of the field equations in \(f (R, T )\) gravity. The effect of coupling constant \(\gamma \) have been studied on the model parameters like density, pressures, anisotropic factor, compactness, surface redshift, etc. both numerically and graphically. A suitable range for \(\gamma \) is also obtained. The physical acceptability and stability of the stellar system have been tested by different physical tests, e.g., the causality condition, Herrera cracking concept, relativistic adiabatic index, energy conditions, etc. One can regain the solutions in Einstein gravity when \(\gamma \rightarrow 0\).



中文翻译:

带状态线性方程的f(R,T)$ f(R,T)$引力中的带电奇异星

我们目前的研究在引力理论(f(R,T)\)的框架内涉及奇异恒星模型。我们采用Ricci标量\(R \)和应力能张量\(T _ {\ mu \ nu} \)的迹线\(T \)的线性函数来表示\(f(R, T)\),即\(f(R,T)= R + 2 \ gamma T \)以获得所提出的模型,其中\(\ gamma \)是耦合常数。此外,为了求解静水力平衡方程,我们考虑径向压力\(p_ {r} \)与物质密度\(\ rho \)之间的线性状态方程为\(p_ {r} = \ alpha \ rho- \ beta \),其中\(\ alpha \)\(\ beta \)是一些正常数,\(\ alpha \)\(\ beta \)都取决于耦合常数\(\ gamma \),本文也对此进行了描述。 。通过使用已经在文献中报道的Krori-Barua ansatz(J. Phys。A,Math。Gen . 8:508,1975 ),我们发现了场方程在\(f(R,T)\)引力的解。 。数值和图形都研究了耦合常数\(\ gamma \)对模型参数的影响,例如密度,压力,各向异性因子,致密性,表面红移等。\(\ gamma \)的合适范围也获得了。恒星系统的物理可接受性和稳定性已通过不同的物理测试进行了测试,例如因果条件,Herrera裂纹概念,相对论绝热指数,能量条件等。当\(\ gamma \ rightarrow 0 \)

更新日期:2021-04-02
down
wechat
bug