当前位置: X-MOL 学术Sci. Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A microrobotic platform actuated by thermocapillary flows for manipulation at the air-water interface
Science Robotics ( IF 26.1 ) Pub Date : 2021-03-31 , DOI: 10.1126/scirobotics.abd3557
Franco N Piñan Basualdo 1, 2 , A Bolopion 2 , M Gauthier 2 , P Lambert 1
Affiliation  

Future developments in micromanufacturing will require advances in micromanipulation tools. Several robotic micromanipulation methods have been developed to position micro-objects mostly in air and in liquids. The air-water interface is a third medium where objects can be manipulated, offering a good compromise between the two previously mentioned ones. Objects at the interface are not subjected to stick-slip due to dry friction in air and profit from a reduced drag compared with those in water. Here, we present the ThermoBot, a microrobotic platform dedicated to the manipulation of objects placed at the air-water interface. For actuation, ThermoBot uses a laser-induced thermocapillary flow, which arises from the surface stress caused by the temperature gradient at the fluid interface. The actuated objects can reach velocities up to 10 times their body length per second without any on-board actuator. Moreover, the localized nature of the thermocapillary flow enables the simultaneous and independent control of multiple objects, thus paving the way for microassembly operations at the air-water interface. We demonstrate that our setup can be used to direct capillary-based self-assemblies at this interface. We illustrate the ThermoBot’s capabilities through three examples: simultaneous control of up to four spheres, control of complex objects in both position and orientation, and directed self-assembly of multiple pieces.



中文翻译:

由热毛细管流动驱动的微型机器人平台,用于在空气-水界面处进行操作

微制造的未来发展将需要显微操作工具的进步。已经开发了几种机器人显微操作方法来定位主要在空气和液体中的微型物体。空气-水界面是可以操纵物体的第三种介质,在前面提到的两种介质之间提供了很好的折衷。界面处的物体不会因空气中的干摩擦而发生粘滑,并且与水中的物体相比,阻力减小。在这里,我们展示了 ThermoBot,这是一个微型机器人平台,专门用于操纵放置在空气-水界面上的物体。对于驱动,ThermoBot 使用激光诱导的热毛细管流动,这是由流体界面处的温度梯度引起的表面应力引起的。在没有任何机载执行器的情况下,被驱动的物体每秒可以达到其身体长度的 10 倍的速度。此外,热毛细管流的局部特性可以同时独立控制多个物体,从而为气水界面的微组装操作铺平了道路。我们证明了我们的设置可用于在此界面引导基于毛细管的自组装。我们通过三个例子来说明 ThermoBot 的功能:同时控制多达四个球体、控制复杂物体的位置和方向,以及多块的定向自组装。从而为空气-水界面的微组装操作铺平了道路。我们证明了我们的设置可用于在此界面引导基于毛细管的自组装。我们通过三个例子来说明 ThermoBot 的功能:同时控制多达四个球体、控制复杂物体的位置和方向,以及多块的定向自组装。从而为空气-水界面的微组装操作铺平了道路。我们证明了我们的设置可用于在此界面引导基于毛细管的自组装。我们通过三个例子来说明 ThermoBot 的功能:同时控制多达四个球体、控制复杂物体的位置和方向,以及多块的定向自组装。

更新日期:2021-04-01
down
wechat
bug