当前位置: X-MOL 学术Surf. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tuning dendritic structure at nanoporous alumina/aluminium interface for uniform electrodeposition of metals for nanocomposite coatings
Surfaces and Interfaces ( IF 5.7 ) Pub Date : 2021-04-01 , DOI: 10.1016/j.surfin.2021.101115
Arti Yadav , M. Muthukumar , M.S. Bobji

Highly ordered nanoporous structures developed by anodising aluminium and its alloys have potential applications in various fields, including wear-resistant coatings in tribology. Filling nanopores with different metals and solid lubricants provide a nanocomposite coating which has a higher hardness. A major hurdle in developing the nanocomposite coatings is that a thick non-conducting barrier layer at the interface between the nanoporous alumina and aluminium substrate. Creating a conducting path at the interface between nanoporous alumina and aluminium without weakening the interfacial strength are expected to have significant advantages for developing tribological coatings. In this work, we systematically modified the interface by the voltage reduction process at different rates and created a dendritic structure at the interface. The dendritic structures growth at the interface is monitored by measuring the capacitance using an LCR meter. The capacitance exponentially decreased with increase in voltage reduction rate. The cross-sectional view of scanning electron microscopy images interface shows that the dendritic structure thickness linearly increases with a decrease in voltage reduction rate. After interface modification, the copper into the nanopores using pulse electrodeposition method. The scanning electron microscopy images show that the capacitance of 0.8–1.2 µF and 1 V/15 s voltage reduction rate gives nearly uniform filling of nanopores over a large area.



中文翻译:

调整纳米多孔氧化铝/铝界面上的树枝状结构,以均匀地电沉积用于纳米复合涂料的金属

通过对铝及其合金进行阳极氧化开发的高度有序的纳米多孔结构在各种领域都有潜在的应用,包括摩擦学中的耐磨涂层。用不同的金属和固体润滑剂填充纳米孔可提供具有更高硬度的纳米复合涂层。开发纳米复合材料涂层的主要障碍是在纳米多孔氧化铝和铝基材之间的界面处形成厚的非导电阻挡层。预期在纳米多孔氧化铝和铝之间的界面处创建导电路径而不削弱界面强度对于开发摩擦涂层具有显着的优势。在这项工作中,我们通过降压过程以不同的速率对界面进行了系统修改,并在界面处形成了树枝状结构。通过使用LCR仪测量电容,可以监控界面处的树枝状结构的生长。电容随着电压降低率的增加而呈指数下降。扫描电子显微镜图像界面的截面图表明,随着电压降低率的降低,树枝状结构的厚度线性增加。界面改性后,采用脉冲电沉积法将铜引入纳米孔。扫描电子显微镜图像显示,电容为0.8–1.2 µF,扫描电子显微镜图像界面的截面图表明,随着电压降低率的降低,树枝状结构的厚度线性增加。界面改性后,采用脉冲电沉积法将铜引入纳米孔。扫描电子显微镜图像显示,电容为0.8–1.2 µF,扫描电子显微镜图像界面的截面图表明,随着电压降低率的降低,树枝状结构的厚度线性增加。界面改性后,采用脉冲电沉积法将铜引入纳米孔。扫描电子显微镜图像显示,电容为0.8–1.2 µF,1个 V / 15 s的降压速率可在大面积上几乎均匀地填充纳米孔。

更新日期:2021-04-13
down
wechat
bug