当前位置: X-MOL 学术React. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling biomass hydrothermal carbonization by the maximum information entropy criterion
Reaction Chemistry & Engineering ( IF 3.4 ) Pub Date : 2021-3-11 , DOI: 10.1039/d1re00002k
Alberto Gallifuoco 1, 2, 3 , Alessandro Antonio Papa 1, 2, 3 , Luca Taglieri 1, 2, 3
Affiliation  

This paper demonstrates an innovation in the kinetic modeling of biomass hydrothermal carbonization based on stochastic techniques. The dynamics of HTC solid-phase transformations is described without assuming a reaction network. Through the maximum-entropy principle, an equation, which fits data flexibly, rises to the status of a lumped kinetic model. The time-course of biomass conversion is described as the macroscopic effect of microreactions, whose frequency is distributed as a continuous probability density function. The mathematics which defines the density function takes advantage of the identified analogies with other scientific fields. The corresponding cumulative frequency distribution is shown to coincide with the empirical fitting equation. The analysis of a wide range of literature data, concerning various waste biomasses, allows testing the new model. The good accordance between previsions and experimental evidence encourages the research to follow this way. Sound procedures for further validating the model are outlined.

中文翻译:

利用最大信息熵准则模拟生物质热液碳化

本文展示了基于随机技术的生物质水热碳化动力学模型的创新。在不假设反应网络的情况下描述了HTC固相转化的动力学。通过最大熵原理,可以灵活拟合数据的方程式变为集总动力学模型的状态。生物质转化的时间过程被描述为微反应的宏观效应,其频率作为连续概率密度函数分布。定义密度函数的数学利用了与其他科学领域类似的方法。相应的累积频率分布显示为与经验拟合方程一致。对涉及各种废物生物量的大量文献数据进行分析,允许测试新模型。规定与实验证据之间的良好一致性鼓励了研究遵循这种方式。概述了进一步验证模型的合理步骤。
更新日期:2021-04-01
down
wechat
bug