当前位置: X-MOL 学术Phys. Plasmas › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation of heat transport using directly driven gold spheres
Physics of Plasmas ( IF 2.0 ) Pub Date : 2021-03-15 , DOI: 10.1063/5.0040320
W. A. Farmer 1 , M. D. Rosen 1 , G. F. Swadling 1 , C. Bruulsema 2 , C. D. Harris 1 , W. Rozmus 1, 2 , M. B. Schneider 1 , M. W. Sherlock 1 , D. H. Edgell 3 , J. Katz 3 , J. S. Ross 1
Affiliation  

Recently, heat transport was investigated using a directly driven beryllium sphere [Farmer et al., Phys. Plasmas 27, 082701 (2020)]. Models that overly restrict heat transport were rejected. This paper extends work to directly driven gold spheres where radiation loss is more important. Here, gold coated spheres are directly driven at the OMEGA laser facility at intensities of 5 × 10 14 W / cm 2. Plasma conditions, laser coupling, and x-ray flux are all measured. Comparisons to 2D radiation-hydrodynamic simulations are performed. Simulations use three common heat transport models: local transport with flux limiters of f =0.15 and f =0.03, and the nonlocal Schurtz–Nicolai–Busquet (SNB) model. It is shown that both the SNB model and f =0.15 match the measured plasma conditions with the SNB model better capturing the temporal evolution of electron temperature. The f =0.03 model predicts too low of an electron density and too hot of a temperature. The measured scattered light is roughly 6% of the incident energy, the f =0.15 and SNB models predict 0.5% uncoupled light, and f =0.03, 38% uncoupled light. The x-ray fluxes in the f =0.15 and SNB simulations rise too quickly and are just outside the measurement's error, while the x-ray flux in the f =0.03 simulation is low by a factor of two-three. For these reasons, the f =0.03 model is rejected.

中文翻译:

研究直接驱动金球的热传递

最近,使用直接驱动的铍球研究了热传递[Farmer et al。,物理 等离子体27,082701(2020)]。过度限制热量传输的模型被拒绝了。本文将工作扩展到直接驱动的金球,在金球中辐射损耗更为重要。在这里,镀金的球体是在OMEGA激光设备上直接驱动的,其强度为 5 × 10 14 w ^ / 厘米 2个。血浆条件,激光耦合和X射线通量均已测量。与2D辐射流体动力学模拟进行了比较。模拟使用三种常见的热传递模型:通量限制为f  = 0.15和f  = 0.03的局部传递,以及非局部Schurtz–Nicolai–Busquet(SNB)模型。结果表明,SNB模型和f  = 0.15都与测得的等离子体条件匹配,SNB模型可以更好地捕获电子温度的时间演变。所述˚F  = 0.03模型预测过低的电子密度和太热的温度。测得的散射光大约是入射能量的6%,f  =0.15和SNB模型预测未耦合光为0.5%,f  = 0.03,未耦合光为38%。f  = 0.15和SNB模拟中的x射线通量上升得太快,并且刚好在测量误差范围之外,而f  = 0.03模拟中的x射线通量却低了三分之二。由于这些原因,f  = 0.03模型被拒绝。
更新日期:2021-03-31
down
wechat
bug