当前位置: X-MOL 学术Complex Anal. Oper. Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Factorizations of Schur functions
Complex Analysis and Operator Theory ( IF 0.7 ) Pub Date : 2021-03-31 , DOI: 10.1007/s11785-021-01101-x
Ramlal Debnath , Jaydeb Sarkar

The Schur class, denoted by \({\mathcal {S}}({\mathbb {D}})\), is the set of all functions analytic and bounded by one in modulus in the open unit disc \({\mathbb {D}}\) in the complex plane \({\mathbb {C}}\), that is

$$\begin{aligned} {\mathcal {S}}({\mathbb {D}}) = \left\{ \varphi \in H^\infty ({\mathbb {D}}): \Vert \varphi \Vert _{\infty } := \sup _{z \in {\mathbb {D}}} |\varphi (z)| \le 1\right\} . \end{aligned}$$

The elements of \({\mathcal {S}}({\mathbb {D}})\) are called Schur functions. A classical result going back to I. Schur states: A function \(\varphi : {\mathbb {D}} \rightarrow {\mathbb {C}}\) is in \({\mathcal {S}}({\mathbb {D}})\) if and only if there exist a Hilbert space \({\mathcal {H}}\) and an isometry (known as colligation operator matrix or scattering operator matrix)

$$\begin{aligned} V = \begin{bmatrix} a &{}\quad B \\ C &{}\quad D \end{bmatrix} : {\mathbb {C}} \oplus {\mathcal {H}} \rightarrow {\mathbb {C}} \oplus {\mathcal {H}}, \end{aligned}$$

such that \(\varphi \) admits a transfer function realization corresponding to V, that is

$$\begin{aligned} \varphi (z) = a + z B (I_{{\mathcal {H}}} - z D)^{-1} C \quad \quad (z \in {\mathbb {D}}). \end{aligned}$$

An analogous statement holds true for Schur functions on the bidisc. On the other hand, Schur-Agler class functions on the unit polydisc in \({\mathbb {C}}^n\) is a well-known “analogue” of Schur functions on \({\mathbb {D}}\). In this paper, we present algorithms to factorize Schur functions and Schur-Agler class functions in terms of colligation matrices. More precisely, we isolate checkable conditions on colligation matrices that ensure the existence of Schur (Schur-Agler class) factors of a Schur (Schur-Agler class) function and vice versa.



中文翻译:

Schur函数的因式分解

Schur类用\({\ mathcal {S}}({\ mathbb {D}})\)表示,是所有函数的集合,在开放单位圆盘\({\ mathbb {D}} \)在复平面\({\ mathbb {C}} \\)中,即

$$ \ begin {aligned} {\ mathcal {S}}({\ mathbb {D}})= \ left \ {\ varphi \ in H ^ \ infty({\ mathbb {D}}):\ Vert \ varphi \ Vert _ {\ infty}:= \ sup _ {z \ in {\ mathbb {D}}} | \ varphi(z)| \ le 1 \ right \}。\ end {aligned} $$

的元素\({\ mathcal {S}}({\ mathbb {d}})\)被称为舒尔功能。一个经典的结果可以回溯到I. Schur指出:函数\(\ varphi:{\ mathbb {D}} \ rightarrow {\ mathbb {C}} \}位于\({\ mathcal {S}}({\ mathbb {D}})\)并且仅当存在希尔伯特空间\({\ mathcal {H}} \)和等轴测图(称为定理算子矩阵或散射算子矩阵)时

$$ \ begin {aligned} V = \ begin {bmatrix} a&{} \ quad B \\ C&{} \ quad D \ end {bmatrix}:{\ mathbb {C}} \ oplus {\ mathcal {H }} \ rightarrow {\ mathbb {C}} \ oplus {\ mathcal {H}},\ end {aligned} $$

这样\(\ varphi \)允许对应于V的传递函数实现,即

$$ \ begin {aligned} \ varphi(z)= a + z B(I _ {{\ mathcal {H}}}-z D)^ {-1} C \ quad \ quad(z \ in {\ mathbb { D}})。\ end {aligned} $$

一个类似的陈述适用于bidisc上的Schur函数。另一方面,\({\ mathbb {C}} ^ n \)中单元多圆盘上的Schur-Agler类函数是\({\ mathbb {D}} \\ )。在本文中,我们提出了根据合积矩阵分解Schur函数和Schur-Agler类函数的算法。更准确地说,我们在合数矩阵上隔离可检查的条件,以确保存在Schur(Schur-Agler类)函数的Schur(Schur-Agler类)因子,反之亦然。

更新日期:2021-03-31
down
wechat
bug