当前位置: X-MOL 学术J. Theor. Probab. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Multiplicatively Symmetrized Version of the Chung-Diaconis-Graham Random Process
Journal of Theoretical Probability ( IF 0.8 ) Pub Date : 2021-03-29 , DOI: 10.1007/s10959-021-01088-3
Martin Hildebrand

This paper considers random processes of the form \(X_{n+1}=a_nX_n+b_n\pmod p\) where p is odd, \(X_0=0\), \((a_0,b_0), (a_1,b_1), (a_2,b_2),\ldots \) are i.i.d., and \(a_n\) and \(b_n\) are independent with \(P(a_n=2)=P(a_n=(p+1)/2)=1/2\) and \(P(b_n=1)=P(b_n=0)=P(b_n=-1)=1/3\). This can be viewed as a multiplicatively symmetrized version of a random process of Chung, Diaconis, and Graham. This paper shows that order \((\log p)^2\) steps suffice for \(X_n\) to be close to uniformly distributed on the integers mod p for all odd p while order \((\log p)^2\) steps are necessary for \(X_n\) to be close to uniformly distributed on the integers mod p.



中文翻译:

Chung-Diaconis-Graham随机过程的一个乘对称形式。

本文考虑形式为\(X_ {n + 1} = a_nX_n + b_n \ pmod p \)的随机过程,其中p为奇数,\(X_0 = 0 \)\((a_0,b_0),(a_1,b_1 ),(a_2,b_2),\ ldots \)是iid,并且\(a_n \)\(b_n \)\(P(a_n = 2)= P(a_n =(p + 1)/ 2)独立)= 1/2 \)\(P(b_n = 1)= P(b_n = 0)= P(b_n = -1)= 1/3 \)。这可以看作是Chung,Diaconis和Graham的随机过程的乘对称形式。本文表明,为了\((\的log P)^ 2 \)步骤足矣\(X_n \)为接近在整数模均匀分布p为所有奇数p为了使\(X_n \)接近于均匀分布在整数mod p上,必须使用阶数\(((log p)^ 2 \)的步骤。

更新日期:2021-03-29
down
wechat
bug