当前位置: X-MOL 学术Int. J. Earth Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal properties of carbonatite and anorthosite from the Superior Province, Ontario, and implications for non-magmatic local thermal effects of these intrusions
International Journal of Earth Sciences ( IF 2.3 ) Pub Date : 2021-03-29 , DOI: 10.1007/s00531-021-02032-w
Derick J. W. Roy , Jesse D. Merriman , Alan G. Whittington , Anne M. Hofmeister

Igneous intrusions are important to the thermomechanical evolution of continents because they inject heat into their relatively cold host rocks, and potentially change the distribution of radiogenic heat production and thermal properties within the crust. To explore one aspect of the complex evolution of the continental crust, this paper investigates the local thermal effects of two intrusive rock types (carbonatites and anorthosites) on the Archean Superior Province of the Canadian shield. We provide new data on their contrasting properties: rock density near 298 K, thermal diffusivity, and heat capacity up to 800 K (which altogether yield thermal conductivity), plus radiogenic element contents. The volumetrically small carbonatites have widely varying radiogenic heat production (2–56 µW m−3) and moderate thermal conductivity at 298 K (~ 1 to 4 W m−1 K−1) which decreases with temperature. The massive Shawmere anorthosite has nearly negligible radiogenic heat production (< 0.002 µW m−3) and low, roughly temperature-independent thermal conductivity (~ 1.6 W m−1 K−1). Steady-state thermal structures within and around these intrusions, which have quite different shapes and physical properties, were modeled using a pipe geometry for carbonatite and a tabular geometry for anorthosite. We found that the thermal aureoles of these intrusion types persist for hundreds of millions of years after the magmatic heat advected by the intrusions has dissipated. Longevitity of aureoles is due to the high radiogenic element concentrations of the small carbonatite intrusions, and to the low thermal conductivity of the Shawmere anorthosite. Our findings apply to other anorthosite bodies, which vary little in composition and mineralogy, whereas results for carbonatites depend on variations in their radiogenic content.



中文翻译:

来自安大略省上级省的碳酸盐岩和钙长石的热学性质,以及对这些侵入体的非岩浆局部热效应的影响

火成岩侵入对大陆的热机械演化很重要,因为它们将热量注入到相对较冷的宿主岩石中,并有可能改变地壳内放射源热产生的分布和热学性质。为了探究大陆壳复杂演化的一个方面,本文研究了加拿大盾构的太古代高品质省份上两种侵入性岩石类型(碳酸盐岩和钙长石)的局部热效应。我们提供了有关它们的对比特性的新数据:岩石密度接近298 K,热扩散率和热容量高达800 K(共产生热导率),以及放射成因元素含量。体积小的碳酸盐岩的放射生热变化很大(2-56 µW m -3)和298 K(〜1至4 W m -1  K -1)时适度的热导率,随温度降低。大规模的肖夫米尔斜长石具有几乎可以忽略的放射生热(<0.002 µW m -3)和低的,与温度无关的热导率(〜1.6 W m -1  K -1)。使用碳酸盐岩的管道几何形状和钙钛矿的板状几何形状对这些侵入体内部和周围的稳态热结构进行建模,这些结构具有完全不同的形状和物理特性。我们发现,这些侵入类型的热金极在侵入侵入所散发的岩浆热消散后仍持续了数亿年。金黄色长石的寿命长是由于小碳酸盐岩侵入岩的高放射成因元素浓度,以及肖夫米尔钙硅钙石的低热导率。我们的发现适用于其他无钙铁矿体,它们的成分和矿物学变化不大,而碳酸盐岩的结果取决于其放射成因含量的变化。

更新日期:2021-03-29
down
wechat
bug