当前位置: X-MOL 学术Tectonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structure of the Tectonic Front of the Western Alps: Control of Fluid Pressure and Halite Occurrence on the Decollement Processes
Tectonics ( IF 3.3 ) Pub Date : 2021-03-25 , DOI: 10.1029/2020tc006591
E. Deville 1
Affiliation  

This study focuses on the respective role of (1) the occurrence and the nature of evaporitic layers and (2) the fluid pressure conditions on the decollement processes and the structure of the foreland fold and thrust belt of the Western Alps. The decollement in the Jura Mountains is predominantly localized in halite‐bearing layers. Anhydrite‐bearing units which are not associated to halite are not hosting major decollement. The shift of decollement level between Mid‐Triassic halite unit and Upper Triassic halite unit has induced local tectonic subtractions and, elsewhere, tectonic duplications at depth. Available fluid pressure measurements show that fluids are not overpressured in the Jura. Even below the salt decollement, they remain in hydrostatic conditions. South of the Jura, the absence of halite is correlated with no efficient role of the Triassic layers in terms of decollement. The available pressure measurements show that the decollement is associated with high overpressure. Because of the low friction of halite, the Jura thrust wedge shows a narrow angle (3°–4°). The relatively high friction behavior of the decollement south of the Jura is responsible for stacks of tectonic units associated with a relatively wide angle of the tectonic wedge (12°–13°). The structural change between the Chartreuse and Vercors massifs is not controlled by the properties of the decollement but by the change of thickness of the sedimentary pile involved in the tectonic wedge. The change of thickness is controlled by paleogeographic heritage during Jurassic and Cretaceous times.

中文翻译:

西阿尔卑斯山构造锋面的结构:消融过程中流体压力和盐岩的发生控制

这项研究的重点是(1)蒸发层的发生和性质,以及(2)流体压力条件对西阿尔卑斯山前陆褶皱过程和前陆褶皱和逆冲带结构的作用。汝拉山脉的断层主要分布在含盐岩层中。与盐岩不相关的含硬石膏的单元不会出现较大的挠曲。中三叠纪盐岩单元和上三叠纪盐岩单元之间的断斜水平的变化已引起局部构造消减,并在其他地方引起了深部的构造重复。可用的流体压力测量结果表明,汝拉州的流体没有超压。即使在盐析下,它们仍保持静水状态。在汝拉以南,就脱钙而言,不存在岩盐与三叠纪层没有有效作用有关。可用的压力测量结果表明,弯折与高超压有关。由于盐岩的摩擦力低,侏罗推力楔形物呈现出狭窄的角度(3°–4°)。汝拉河南部偏斜的相对较高的摩擦力是与构造楔相对较大的角度(12°–13°)相关的构造单元堆积的原因。查特勒斯和韦尔科尔斯地块之间的结构变化不受弯折性质的控制,而是受构造楔形物中沉积桩厚度的变化控制。侏罗纪和白垩纪时期的厚度变化受古地理遗产的控制。可用的压力测量结果表明,弯折与高超压有关。由于盐岩的摩擦力低,侏罗推力楔形物呈现出狭窄的角度(3°–4°)。汝拉河以南偏斜的相对较高的摩擦力是与构造楔相对较大的角度(12°–13°)相关的构造单元堆积的原因。查特勒斯山脉和韦科尔山脉之间的结构变化不受弯折性质的控制,而是受构造楔形物中沉积桩厚度的变化控制。侏罗纪和白垩纪时期的厚度变化受古地理遗产的控制。可用的压力测量结果表明,弯折与高超压有关。由于盐岩的摩擦力低,侏罗推力楔形物呈现出狭窄的角度(3°–4°)。汝拉河南部偏斜的相对较高的摩擦力是与构造楔相对较大的角度(12°–13°)相关的构造单元堆积的原因。查特勒斯山脉和韦科尔山脉之间的结构变化不受弯折性质的控制,而是受构造楔形物中沉积桩厚度的变化控制。侏罗纪和白垩纪时期的厚度变化受古地理遗产的控制。侏罗推力楔形物呈窄角度(3°–4°)。汝拉河南部偏斜的相对较高的摩擦力是与构造楔相对较大的角度(12°–13°)相关的构造单元堆积的原因。查特勒斯山脉和韦科尔山脉之间的结构变化不受弯折性质的控制,而是受构造楔形物中沉积桩厚度的变化控制。侏罗纪和白垩纪时期的厚度变化受古地理遗产的控制。侏罗推力楔形物呈窄角度(3°–4°)。汝拉河南部偏斜的相对较高的摩擦力是与构造楔相对较大的角度(12°–13°)相关的构造单元堆积的原因。查特勒斯山脉和韦科尔山脉之间的结构变化不受弯折性质的控制,而是受构造楔形物中沉积桩厚度的变化控制。侏罗纪和白垩纪时期的厚度变化受古地理遗产的控制。查特勒斯山脉和韦科尔山脉之间的结构变化不受弯折性质的控制,而是受构造楔形物中沉积桩厚度的变化控制。侏罗纪和白垩纪时期的厚度变化受古地理遗产的控制。查特勒斯山脉和韦科尔山脉之间的结构变化不受弯折性质的控制,而是受构造楔形物中沉积桩厚度的变化控制。侏罗纪和白垩纪时期的厚度变化受古地理遗产的控制。
更新日期:2021-04-22
down
wechat
bug