当前位置: X-MOL 学术Adv. Theory Simul. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
From Micromagnetic to In Silico Modeling of Magnetic Nanodisks for Hyperthermia Applications
Advanced Theory and Simulations ( IF 2.9 ) Pub Date : 2021-03-26 , DOI: 10.1002/adts.202100013
Alessandra Manzin 1 , Riccardo Ferrero 1 , Marta Vicentini 1, 2
Affiliation  

Magnetic nanodisks have been recently proposed as biomedical tools for therapeutics at the nanoscale level, with a special focus on hyperthermia for cancer cure. Here we present a detailed study of permalloy nanodisks to be used in alternative to superparamagnetic iron oxide nanoparticles, as efficient heating agents that release heat via magnetic hysteresis. A micromagnetic modeling analysis is carried out to identify sizes and ac field parameters that maximize the specific loss power (SLP), guaranteeing the fulfillment of biophysical constraints (Hergt–Dutz limit) and vortex state at remanence (reduced agglomeration effects). The highest SLP (790 W g−1) is found for 100 nm diameter and 20 nm thickness nanodisks, excited at a frequency of 75 kHz. Further analysis elucidates the influence of magnetostatic interactions and local nanodisk‐field orientation on the SLP of nanodisk clusters, which originate from the deposition in target tissues. At high concentrations, magnetostatic interactions can lead to a reduction of 40–50% in the hysteresis losses. From thermal simulations, we finally demonstrate that in a murine model temperature increments comparable to that obtained in calorimetric measurements under quasi‐adiabatic conditions can be achieved only by using an order of magnitude larger dosage of nanodisks, due to blood perfusion effects.

中文翻译:

从磁学到热疗应用的磁性纳米磁盘的Insilico建模

近年来,已经提出了磁性纳米盘作为用于纳米级治疗的生物医学工具,特别关注用于治疗癌症的热疗。在这里,我们介绍了坡莫合金纳米盘的详细研究,该合金可替代超顺磁性氧化铁纳米颗粒,作为通过磁滞释放热量的有效加热剂。进行了微磁建模分析,以识别尺寸和交流场参数,以最大程度地提高比损耗功率(SLP),从而保证满足生物物理约束条件(Hergt–Dutz极限)和剩磁时的涡旋状态(减小的团聚效应)。最高SLP(790 W g -1对于直径为100 nm和厚度为20 nm的纳米盘,发现它们在75 kHz的频率下激发。进一步的分析阐明了静磁相互作用和局部纳米盘场取向对纳米盘簇SLP的影响,这是由于靶组织中的沉积所致。在高浓度下,静磁相互作用可导致磁滞损耗减少40–50%。从热模拟中,我们最终证明,在鼠模型中,由于血液灌注效应,在准绝热条件下,仅通过使用大剂量的纳米盘,就可以实现与量热法测量的绝热条件下可比的温度增量。
更新日期:2021-05-05
down
wechat
bug