当前位置: X-MOL 学术Plasma Chem. Plasma Proc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ignition Process of Diesel Spray Based on Behavior of Rotating Gliding Arc in Plasma Reformer
Plasma Chemistry and Plasma Processing ( IF 2.6 ) Pub Date : 2021-03-26 , DOI: 10.1007/s11090-021-10164-9
Seongil Choi , Hongjae Kang , Kwan-Tae Kim , Young-Hoon Song , Dae Hoon Lee

The design of efficient plasma reformers requires both efficient fuel conversion of fuel and chemical energy extraction. In this regard, liquid fuels provide the advantages of high gravimetric and volumetric energy densities, therefore yielding high energy; in particular, diesel is promising for use in plasma reformers. In this study, we investigated the ignition process in a diesel reformer driven by a rotating gliding arc using a high-speed camera. The locations of the flame kernel generated by the arc were clearly identified under different power conditions. At high power, the flame kernel was generated at the nozzle tip, which grew into a fully developed flame. This indicates that the period for fuel vaporization and mixing with air (which is a necessary step prior to chemical reactions and is typically longer than the characteristic chemical reaction time) is extremely short. Moreover, with low oxygen concentrations, we observed a rotating flame kernel. At low power, the flame kernel was generated at a distance from the nozzle tip and the arc. This result indicates that the generation mechanism of the flame kernel in the plasma reformer is not straightforward; flow and arc dynamics also influence the interactions between the arc and fuel droplets.



中文翻译:

基于等离子重整器中旋转滑弧行为的柴油机喷雾着火过程

有效的等离子体重整器的设计既需要燃料的有效燃料转化又需要化学能提取。在这方面,液体燃料具有重量和体积能量密度高的优点,因此产生高能量。特别是,柴油有望用于等离子重整器。在这项研究中,我们使用高速相机研究了由旋转滑弧驱动的柴油重整器的点火过程。在不同的功率条件下,可以清楚地识别出电弧产生的火焰核的位置。在高功率下,在喷嘴尖端产生火焰核,该火焰核成长为完全发展的火焰。这表明燃料汽化和与空气混合的时间段(这是化学反应之前的必要步骤,通常比特征性化学反应时间更长)。此外,在低氧浓度下,我们观察到旋转的火焰核。在低功率下,火焰核在距喷嘴尖端和电弧一定距离处产生。该结果表明,等离子体重整器中火焰核的生成机理并不直接。流动和电弧动力学也影响电弧与燃料滴之间的相互作用。该结果表明,等离子体重整器中火焰核的生成机理并不直接。流动和电弧动力学也影响电弧与燃料滴之间的相互作用。该结果表明,等离子体重整器中火焰核的生成机理并不直接。流动和电弧动力学也影响电弧与燃料滴之间的相互作用。

更新日期:2021-03-26
down
wechat
bug