当前位置: X-MOL 学术Celest. Mech. Dyn. Astr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
General relativistic effects acting on the orbits of Galileo satellites
Celestial Mechanics and Dynamical Astronomy ( IF 1.6 ) Pub Date : 2021-03-25 , DOI: 10.1007/s10569-021-10014-y
K. Sośnica , G. Bury , R. Zajdel , K. Kazmierski , J. Ventura-Traveset , R. Prieto-Cerdeira , L. Mendes

The first pair of satellites belonging to the European Global Navigation Satellite System (GNSS)—Galileo—has been accidentally launched into highly eccentric, instead of circular, orbits. The final height of these two satellites varies between 17,180 and 26,020 km, making these satellites very suitable for the verification of the effects emerging from general relativity. We employ the post-Newtonian parameterization (PPN) for describing the perturbations acting on Keplerian orbit parameters of artificial Earth satellites caused by the Schwarzschild, Lense–Thirring, and de Sitter general relativity effects. The values emerging from PPN numerical simulations are compared with the approximations based on the Gaussian perturbations for the temporal variations of the Keplerian elements of Galileo satellites in nominal, near-circular orbits, as well as in the highly elliptical orbits. We discuss what kinds of perturbations are detectable using the current accuracy of precise orbit determination of artificial Earth satellites, including the expected secular and periodic variations, as well as the constant offsets of Keplerian parameters. We found that not only secular but also periodic variations of orbit parameters caused by general relativity effects exceed the value of 1 cm within 24 h; thus, they should be fully detectable using the current GNSS precise orbit determination methods. Many of the 1-PPN effects are detectable using the Galileo satellite system, but the Lense–Thirring effect is not.



中文翻译:

作用于伽利略卫星轨道的广义相对论效应

属于欧洲全球导航卫星系统(GNSS)的第一对卫星伽利略(Galileo)被意外发射到高度偏心的轨道上,而不是圆形轨道上。这两颗卫星的最终高度在17,180至26,020 km之间变化,这使得这些卫星非常适合验证广义相对论产生的影响。我们采用牛顿后参数化(PPN)来描述由Schwarzschild,Lense-Thirring和de Sitter广义相对论效应引起的对人造地球卫星Keplerian轨道参数的扰动。将PPN数值模拟产生的值与基于高斯扰动的近似值进行比较,以估算伽利略卫星的Keplerian元素在名义,近圆形轨道上的时间变化,以及在高度椭圆形的轨道上 我们讨论了使用当前人造地球卫星精确轨道确定的精度可以检测到哪些类型的扰动,包括预期的长期和周期性变化以及开普勒参数的恒定偏移量。我们发现,由广义相对论效应引起的轨道参数的长期变化和周期性变化,在24小时内都超过了1 cm。因此,使用当前的GNSS精确轨道确定方法应该可以完全检测到它们。使用伽利略卫星系统可以检测到许多1-PPN效应,但不能检测出Lense-Thirring效应。包括预期的长期和周期性变化,以及开普勒参数的恒定偏移量。我们发现,由广义相对论效应引起的轨道参数的长期变化和周期性变化,在24小时内都超过了1 cm。因此,使用当前的GNSS精确轨道确定方法应该可以完全检测到它们。使用伽利略卫星系统可以检测到许多1-PPN效应,但不能检测出Lense-Thirring效应。包括预期的长期和周期性变化,以及开普勒参数的恒定偏移量。我们发现,由广义相对论效应引起的轨道参数的长期变化和周期性变化,在24小时内都超过了1 cm。因此,使用当前的GNSS精确轨道确定方法应该可以完全检测到它们。使用伽利略卫星系统可以检测到许多1-PPN效应,但不能检测出Lense-Thirring效应。

更新日期:2021-03-25
down
wechat
bug