当前位置: X-MOL 学术Meas. Control › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental and numerical investigations on the effects of radius of curvature and longitudinal slope on the responses of curved bridges subject to seismic pounding
Measurement and Control ( IF 2 ) Pub Date : 2021-03-24 , DOI: 10.1177/00202940211000377
Chiyu Jiao 1, 2 , Junrui Lu 2 , Chuang Wang 3 , Peiheng Long 1, 4 , Zhe Sun 5
Affiliation  

Because of the irregular geometries, earthquake-induced adjacent curved bridge pounding may lead to more complex local damage or even collapse. The relevant research is mainly concentrated on the numerical analysis which lack experimental verification and discussion by changing of structural parameters. In this paper, a scaled three-dimensional numerical model of a curved bridge is established based on 3D contact friction theory for investigating the uneven distribution of pounding forces at the expansion joint of the bridge. Shaking table tests were carried out at first on a curved bridge to validate the numerical model. A series of parametric studies were then conducted to examine the impacts of the radius of curvature and longitudinal slope of the superstructure of the curved bridge on its seismic pounding response. The results show that the maximum pounding force first increases and then decreases as the radius of curvature increases, but that it decreases monotonically with the growth of the longitudinal slope. These results suggest that controlling the radius of curvature and the longitudinal slope of the superstructure of the bridge can reduce the localized high stress that is induced by seismic pounding. Also, the unevenly distributed pounding forces can significantly increase the relative radial displacement of the bridge’s deck corners, although the relative tangential displacement may decrease. It is thus necessary to adopt effective anti-pounding measures to prevent the superstructure of the bridge from being unseated.



中文翻译:

曲率半径和纵向坡度对地震冲击作用下弯桥响应影响的试验和数值研究

由于不规则的几何形状,地震引起的相邻弯曲桥的撞击可能导致更复杂的局部破坏甚至崩溃。相关研究主要集中在数值分析上,缺乏通过结构参数的改变来进行实验验证和讨论。本文基于3D接触摩擦理论建立了弯桥的比例尺三维数值模型,以研究桥的伸缩缝处冲击力的不均匀分布。首先在弯曲的桥梁上进行了振动台测试,以验证数值模型。然后进行了一系列的参数研究,以检查弯曲桥梁上部结构的曲率半径和纵向坡度对其地震冲击响应的影响。结果表明,最大冲击力首先随着曲率半径的增大而增大,然后减小,但是随着纵向斜率的增大,其最大强度单调减小。这些结果表明,控制桥梁上部结构的曲率半径和纵向坡度可以减少地震冲击引起的局部高应力。而且,尽管相对切向位移可能会减小,但不均匀分布的冲击力会显着增加桥梁甲板角的相对径向位移。因此,有必要采取有效的防撞措施,以防止桥梁的上部结构松动。但是随着纵向斜率的增加,它单调减少。这些结果表明,控制桥梁上部结构的曲率半径和纵向坡度可以减少地震冲击引起的局部高应力。而且,尽管相对切向位移可能会减小,但不均匀分布的冲击力会显着增加桥梁甲板角的相对径向位移。因此,有必要采取有效的防撞措施,以防止桥梁的上部结构松动。但是随着纵向斜率的增加,它单调减少。这些结果表明,控制桥梁上部结构的曲率半径和纵向坡度可以减少地震冲击引起的局部高应力。而且,尽管相对切向位移可能会减小,但不均匀分布的冲击力会显着增加桥梁甲板角的相对径向位移。因此,有必要采取有效的防撞措施,以防止桥梁的上部结构松动。尽管相对切向位移可能会减小,但不均匀分布的冲击力会显着增加桥面板角的相对径向位移。因此,有必要采取有效的防撞措施,以防止桥梁的上部结构松动。尽管相对切向位移可能会减小,但不均匀分布的冲击力会显着增加桥面板角的相对径向位移。因此,有必要采取有效的防撞措施,以防止桥梁的上部结构松动。

更新日期:2021-03-25
down
wechat
bug