当前位置: X-MOL 学术Geochemistry, Geophys. Geosystems › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mineral Dissolution and Precipitation Under Stress: Model Formulation and Application to Metamorphic Reactions
Geochemistry, Geophysics, Geosystems ( IF 4.480 ) Pub Date : 2021-03-22 , DOI: 10.1029/2021gc009633
Benjamin Malvoisin 1, 2 , L. P. Baumgartner 1
Affiliation  

Reactions in the Earth's crust occur through a dissolution‐precipitation process in the presence of fluid. Dissolution releases aqueous species which are transported to the locus of precipitation. This replacement process generates creep deformation (i.e., dissolution‐precipitation creep) due to volume change during reaction and stress‐controlled mass re‐distribution in the rock. Reaction under stress also modifies the rock microstructure and the pressure record during metamorphism. A quantitative model for dissolution‐precipitation creep is developed here by considering both dissolution and precipitation at grain interfaces to simulate replacement reactions under stress. A new creep law is obtained for pressure solution, allowing for the reaction‐ and the diffusion‐controlled cases to be modeled with a single expression. It is extended to replacement reactions by introducing volume change during reaction. Deformation mechanism maps are generated with the new creep law, indicating that, when fluid is present, dissolution‐precipitation creep is the dominant deformation mechanism in the Earth's crust. Numerical model reveals that grain shape preferred orientation only develops near thermodynamic equilibrium. This is consistent with measurements of porphyroblasts preferred orientation in rocks from the Nufenen Pass (Switzerland) having experienced prograde metamorphism. Kinetics play a key role on the thermodynamic pressure of metamorphic reaction. Near the equilibrium, reaction is controlled by either σ1 or σ3 depending on the total volume change during reaction whereas it is controlled by the mean stress far from the equilibrium.

中文翻译:

应力作用下矿物的溶解与沉淀:模型公式化及其在变质反应中的应用

地壳中的反应是在有液体的情况下通过溶解-沉淀过程发生的。溶解释放出水相物质,水相物质被输送到沉淀地点。由于反应过程中体积的变化和应力控制的质量在岩石中的重新分布,这种置换过程会产生蠕变变形(即,溶解-沉淀蠕变)。应力作用下的反应也改变了岩石的微观结构和变质过程中的压力记录。通过考虑晶粒界面的溶解和沉淀来模拟应力作用下的置换反应,建立了溶解-沉淀蠕变的定量模型。为压力解获得了新的蠕变定律,从而使反应和扩散控制的情况可以用单个表达式建模。通过在反应过程中引入体积变化,将其扩展到替代反应。变形机理图是根据新的蠕变定律生成的,表明当存在流体时,溶解-沉淀蠕变是地壳的主要变形机理。数值模型表明,晶粒形状优选取向仅在热力学平衡附近发展。这与对Nupenen Pass(瑞士)经历了变质作用的岩石中成岩细胞优先取向的测量结果一致。动力学对变质反应的热力学压力起着关键作用。接近平衡时,反应受以下任一因素控制 当存在流体时,溶解-沉淀蠕变是地壳的主要变形机制。数值模型表明,晶粒形状优选取向仅在热力学平衡附近发展。这与对Nupenen Pass(瑞士)经历了变质作用的岩石中成岩细胞优先取向的测量结果一致。动力学对变质反应的热力学压力起着关键作用。接近平衡时,反应受以下任一因素控制 当存在流体时,溶解-沉淀蠕变是地壳的主要变形机制。数值模型表明,晶粒形状优选取向仅在热力学平衡附近发展。这与对Nupenen Pass(瑞士)经历了变质作用的岩石中成岩细胞优先取向的测量结果一致。动力学对变质反应的热力学压力起着关键作用。接近平衡时,反应受以下任一因素控制 这与对Nupenen Pass(瑞士)经历了变质作用的岩石中成岩细胞优先取向的测量结果一致。动力学对变质反应的热力学压力起着关键作用。接近平衡时,反应受以下任一因素控制 这与对Nupenen Pass(瑞士)经历了变质作用的岩石中成岩细胞优先取向的测量结果一致。动力学对变质反应的热力学压力起着关键作用。接近平衡时,反应受以下任一因素控制σ 1σ 3根据反应而它是由平均应力远离平衡控制过程中的总的体积变化。
更新日期:2021-05-02
down
wechat
bug