当前位置: X-MOL 学术Plasma Chem. Plasma Proc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Grid-Assisted Co-Sputtering Method: Background, Advancement, and Prospect
Plasma Chemistry and Plasma Processing ( IF 2.6 ) Pub Date : 2021-03-20 , DOI: 10.1007/s11090-021-10165-8
Ali Kosari Mehr , Abbas Kosari Mehr

In this paper, the incorporation of auxiliary grids/electrodes into the design of the sputtering method is scrutinized by studying the impact of factors such as grid size, grid position, grid bias voltage, electrode sheath design, substrate bias voltage, reactive gas partial pressure, and magnetic trap configuration on the discharge condition and thin-film growth. In this regard, utilizing the updated Berg model for reactive sputtering, the authors obtained a formulation for the reactive grid-assisted sputtering. By the newly-developed formulation, the sputtering rate and the reactive gas partial pressure were simulated as a function of the reactive gas flow rate for various grid-to-target distances, argon partial pressures (0.67, 1.6, and 3.6 Pa), and discharge current densities (0.01, 0.015, and 0.02 A/cm2). According to the computation results, with a grid being utilized, the width of the hysteresis loops can be modified in a broader range by changing either the grid-to-target distance, the argon partial pressure, or the discharge current, resulting in better control over the deposition process. Moreover, the novel configuration of anode-spot-assisted sputtering was proposed to significantly ionize sputtered/neutral atoms near the substrate and to simultaneously deposit sputtered species and products produced as the direct result of introducing dust into the dense plasma. Finally, diverse configurations of the grid-assisted co-sputtering method were introduced for two prime purposes: deposition of composite films in any desired ratios of constituents without significantly changing the other co-sputtering parameters, and favorable alternation of a hysteresis loop for one of the guns at shared gas flow rates.



中文翻译:

网格辅助共溅射方法:背景,进展与展望

在本文中,通过研究栅格尺寸,栅格位置,栅格偏置电压,电极护套设计,衬底偏置电压,反应性气体分压等因素的影响,详细研究了将辅助栅格/电极结合到溅射方法的设计中的情况。 ,以及在放电条件和薄膜生长上的磁阱配置。在这方面,利用更新的Berg模型进行反应性溅射,作者获得了反应性栅极辅助溅射的配方。通过新开发的公式,模拟了溅射速率和反应性气体分压随反应气流速的变化的关系,其中该反应速度是各种栅距到目标距离,氩气分压(0.67、1.6和3.6 Pa)以及放电电流密度(0.01、0.015和0.02 A / cm 2)。根据计算结果,利用栅格,通过改变栅格到目标的距离,氩分压或放电电流,可以在更大的范围内修改磁滞回线的宽度,从而实现更好的控制在沉积过程中。此外,提出了阳极-斑点辅助溅射的新颖构造,以使衬底附近的溅射/中性原子显着电离,并同时沉积作为将粉尘引入致密等离子体中的直接结果而产生的溅射物质和产物。最后,出于两个主要目的,引入了多种网格辅助共溅射方法的配置:以任何所需比例的成分沉积复合膜,而不会显着改变其他共溅射参数,

更新日期:2021-03-21
down
wechat
bug