当前位置: X-MOL 学术Supercond. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Superheating fields of semi-infinite superconductors and layered superconductors in the diffusive limit: structural optimization based on the microscopic theory
Superconductor Science and Technology ( IF 3.6 ) Pub Date : 2021-03-11 , DOI: 10.1088/1361-6668/abdedd
Takayuki Kubo

The superheating field $H_\mathrm{sh}$ of the Meissner state is thought to determine the theoretical field-limit of superconducting accelerator cavities. We investigate $H_\mathrm{sh}$ of semi-infinite superconductors and layered structures in the diffusive limit using the well-established quasiclassical Green’s function formalism of the BCS theory. The coupled Maxwell–Usadel equations are self-consistently solved to obtain the spatial distributions of the magnetic field, screening current density, penetration depth, pair potential, and $H_\mathrm{sh}$. For a semi-infinite superconductor in the diffusive limit, we obtain $H_\mathrm{sh} = 0.795 H_{c0}$ at the temperature $T\to 0$. Here, $H_{c0}$ is the thermodynamic critical-field at the zero temperature. By laminating a superconducting film (S) with the thickness $d$ on a semi-infinite superconductor (Σ), we can engineer $H_\mathrm{sh}(d)$ of the layered structure. When $d$ is the optimum thickness $d_m$, $H_\mathrm{sh}$ can be larger than that of the simple semi-infinite superconductors made from the S and Σ materials: $H_\mathrm{sh}(d_m) \gt \max \{H_\mathrm{sh}^{\textrm{(S)}} , H_\mathrm{sh}^{(\Sigma)} \}$. The present study addresses the calculation of $H_\mathrm{sh}$ of the dirty heterostructure using the microscopic theory from beginning to end for the first time, which contributes to the microscopic understanding of the surface engineering for pushing up the accelerating gradient of superconducting cavities for particle accelerators.



中文翻译:

扩散极限内半无限超导体和层状超导体的过热场:基于微观理论的结构优化

$ H_ \ mathrm {sh} $认为,迈斯纳状态的过热场决定了超导加速器腔的理论场极限。我们$ H_ \ mathrm {sh} $使用已建立的BCS理论的准古典格林函数形式主义,研究扩散极限中的半无限超导体和层状结构。可以自洽地求解耦合的Maxwell-Usadel方程,以获得磁场的空间分布,筛选电流密度,穿透深度,线对电势和$ H_ \ mathrm {sh} $。对于扩散极限中的半无限超导体,我们$ H_ \ mathrm {sh} = 0.795 H_ {c0} $在温度下获得$ T \至0 $。此处$ H_ {c0} $是零温度下的热力学临界场。通过层压具有一定厚度的超导膜(S)$ d $在半无限超导体(Σ)上,我们可以设计$ H_ \ mathrm {sh}(d)$分层结构。当$ d $为最佳厚度时$ d_m $$ H_ \ mathrm {sh} $可以大于由S和Σ材料制成的简单的半无限超导体的厚度:$ H_ \ mathrm {sh}(d_m)\ gt \ max \ {H_ \ mathrm {sh} ^ {\ textrm {(S)}},H_ \ mathrm {sh} ^ {(\ Sigma)} \} $。本研究$ H_ \ mathrm {sh} $首次使用微观理论从头到尾解决了脏异质结构的计算问题,这有助于对表面工程的微观理解,从而推动了粒子加速器超导腔的加速梯度。

更新日期:2021-03-11
down
wechat
bug