当前位置: X-MOL 学术Int. J. Impact. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Scaling the response of armor steel subjected to blast loading
International Journal of Impact Engineering ( IF 5.1 ) Pub Date : 2021-03-17 , DOI: 10.1016/j.ijimpeng.2021.103863
Tiaoqi Fu , Ming Zhang , Qichen Zheng , Di Zhou , Xiaowang Sun , Xianhui Wang

The influence of the strain-rate effect of steel and the mechanical effect of explosive shock load are both key problems to achieving the similarity scaling of a steel plate structure under blast loading. In this research, the scaling of the dynamic response of strain-rate sensitive armor steel subjected to air blast loading was studied further. First, the specific impulse was defined, and the influence of the strain-rate and the geometric scaling ratio on the specific impulse correction factor was analyzed with dimensional analysis. Then, a real air explosion test was carried out to study the response of a full-size armor steel plate during a blast, and the Johnson-Cook constitutive parameters of the armor steel material were obtained using split Hopkinson pressure bar experimental technology, with which the accurate scaling base mode was established. Furthermore, by employing the correction factors of the specific impulse and the total impulse calculated by empirical equations, two correction methods were proven: I-correcting the stand-off distance and II-correcting the charge mass. Then, the relationships between the specific impulse, the total impulse, the stand-off distance and the charge mass are discussed, based on which the explosion load boundary corresponding to the geometric scaling coefficient was determined. The results showed that the prediction of the corrected scaled model was in good agreement with the experimental results, and both methods could achieve the scaling of the response of the armor steel plate subjected to blast loading.



中文翻译:

缩放爆炸载荷下的装甲钢的响应

钢的应变率效应和爆炸冲击载荷的机械效应的影响都是在爆炸载荷下实现钢板结构相似缩放的关键问题。在这项研究中,进一步研究了风速载荷作用下应变率敏感型铠装钢的动力响应的标度。首先,定义了比冲,并用尺寸分析法分析了应变率和几何比例对比冲校正因子的影响。然后,进行了真实的空气爆炸试验,研究了全尺寸装甲钢板在爆炸过程中的响应,并使用霍普金森分流式压力棒实验技术获得了装甲钢板材料的Johnson-Cook本构参数,以此建立了精确的缩放基准模式。此外,通过利用经验冲激公式计算的比冲和总冲激的校正因子,证明了两种校正方法:I校正间隔距离和II校正电荷质量。然后,讨论了比冲量,总冲量,间隔距离和装料量之间的关系,在此基础上确定了与几何比例系数相对应的爆炸载荷边界。结果表明,修正后的比例模型的预测结果与实验结果吻合较好,两种方法都能达到爆炸载荷作用下装甲钢板响应的缩放比例。通过利用经验方程式计算出的特定脉冲和总脉冲的校正因子,证明了两种校正方法:I-校正间隔距离和II-校正电荷质量。然后,讨论了比冲量,总冲量,间隔距离和装料量之间的关系,在此基础上确定了与几何比例系数相对应的爆炸载荷边界。结果表明,修正后的比例模型的预测结果与实验结果吻合较好,两种方法都能达到爆炸载荷作用下装甲钢板响应的缩放比例。通过利用经验方程式计算出的特定脉冲和总脉冲的校正因子,证明了两种校正方法:I-校正间隔距离和II-校正电荷质量。然后,讨论了比冲量,总冲量,间隔距离和装料量之间的关系,在此基础上确定了与几何比例系数相对应的爆炸载荷边界。结果表明,修正后的比例模型的预测结果与实验结果吻合较好,两种方法都能达到爆炸载荷作用下装甲钢板响应的缩放比例。讨论了比冲量,总冲量,对峙距离和装药量之间的关系,并据此确定了与几何比例系数相对应的爆炸载荷边界。结果表明,修正后的比例模型的预测结果与实验结果吻合较好,两种方法都能达到爆炸载荷作用下装甲钢板响应的缩放比例。讨论了比冲量,总冲量,对峙距离和装药量之间的关系,并据此确定了与几何比例系数相对应的爆炸载荷边界。结果表明,修正后的比例模型的预测结果与实验结果吻合较好,两种方法都能达到爆炸载荷作用下装甲钢板响应的缩放比例。

更新日期:2021-04-01
down
wechat
bug