当前位置: X-MOL 学术J. Biomed. Opt. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tunable blood oxygenation in the vascular anatomy of a semi-anthropomorphic photoacoustic breast phantom
Journal of Biomedical Optics ( IF 3.5 ) Pub Date : 2021-03-01 , DOI: 10.1117/1.jbo.26.3.036003
Maura Dantuma 1 , Saskia Kruitwagen 1, 2 , Javier Ortega-Julia 1 , Rutger P Pompe van Meerdervoort 3 , Srirang Manohar 1
Affiliation  

Significance: Recovering accurate oxygenation estimations in the breast with quantitative photoacoustic tomography (QPAT) is not straightforward. Accurate light fluence models are required, but the unknown ground truth of the breast makes it difficult to validate them. Phantoms are often used for the validation, but most reported phantoms have a simple architecture. Fluence models developed in these simplistic objects are not accurate for application on the complex tissues of the breast. Aim: We present a sophisticated breast phantom platform for photoacoustic (PA) and ultrasound (US) imaging in general, and specifically for QPAT. The breast phantom is semi-anthropomorphic in distribution of optical and acoustic properties and contains wall-less channels with blood. Approach: 3D printing approaches are used to develop the solid 3D breast phantom from custom polyvinyl chloride plastisol formulations and additives for replicating the tissue optical and acoustic properties. A flow circuit was developed to flush the channels with bovine blood with a controlled oxygen saturation level. To showcase the phantom’s functionality, PA measurements were performed on the phantom with two oxygenation levels. Image reconstructions with and without fluence compensation from Monte Carlo simulations were analyzed for the accuracy of oxygen saturation estimations. Results: We present design aspects of the phantom, demonstrate how it is developed, and present its breast-like appearance in PA and US imaging. The oxygen saturations were estimated in two regions of interest with and without using the fluence models. The fluence compensation positively influenced the SO2 estimations in all cases and confirmed that highly accurate fluence models are required to minimize estimation errors. Conclusions: This phantom allows studies to be performed in PA in carefully controlled laboratory settings to validate approaches to recover both qualitative and quantitative features sought after in in-vivo studies. We believe that testing with phantoms of this complexity can streamline the transition of new PA technologies from the laboratory to studies in the clinic.

中文翻译:

半拟人化光声乳房假体血管解剖结构中的可调血氧合

意义:使用定量光声断层扫描 (QPAT) 恢复准确的乳房氧合估计并不简单。需要准确的光通量模型,但乳房的未知基本事实使其难以验证。Phantom 通常用于验证,但大多数报告的 phantom 具有简单的架构。在这些简单的对象中开发的 Fluence 模型对于在乳房的复杂组织上的应用并不准确。目标:我们为光声 (PA) 和超声 (US) 成像提供了一个复杂的乳房模型平台,特别是 QPAT。乳房幻影在光学和声学特性的分布上是半拟人的,并且包含带有血液的无壁通道。方法:3D 打印方法用于从定制的聚氯乙烯塑料溶胶配方和添加剂开发固体 3D 乳房模型,以复制组织的光学和声学特性。开发了一种流动回路,用具有受控氧饱和度水平的牛血冲洗通道。为了展示体模的功能,在两个氧合水平的体模上进行了 PA 测量。针对氧饱和度估计的准确性,分析了来自蒙特卡罗模拟的具有和不具有能量密度补偿的图像重建。结果:我们展示了体模的设计方面,展示了它是如何开发的,并在 PA 和 US 成像中展示了它的乳房状外观。在使用和不使用注量模型的情况下估计两个感兴趣区域的氧饱和度。通量补偿在所有情况下都对 SO2 估计产生积极影响,并证实需要高度准确的通量模型来最小化估计误差。结论:该模型允许在仔细控制的实验室环境中在 PA 中进行研究,以验证恢复体内研究中寻求的定性和定量特征的方法。我们相信,用这种复杂的体模进行测试可以简化新 PA 技术从实验室到临床研究的过渡。该体模允许在仔细控制的实验室环境中在 PA 中进行研究,以验证恢复体内研究中寻求的定性和定量特征的方法。我们相信,用这种复杂的体模进行测试可以简化新 PA 技术从实验室到临床研究的过渡。该体模允许在仔细控制的实验室环境中在 PA 中进行研究,以验证恢复体内研究中寻求的定性和定量特征的方法。我们相信,用这种复杂的体模进行测试可以简化新 PA 技术从实验室到临床研究的过渡。
更新日期:2021-03-16
down
wechat
bug