当前位置: X-MOL 学术IEEE Trans. Ind. Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modified LQR Technique for Fuel-Cell-Integrated Boost Converter
IEEE Transactions on Industrial Electronics ( IF 7.5 ) Pub Date : 2020-06-10 , DOI: 10.1109/tie.2020.3000096
Nitesh Agrawal , Susovon Samanta , Subhojit Ghosh

Fuel cells (FCs) are an alternative source of energy whose by-products are heat, vapor, and water. For medium-power and standalone operation, an FC is integrated with a boost converter, as the required voltage level is higher than the supply. Control of such a converter with a slow dynamic source requires a fast-acting controller, since the demand executed by the controller affects the action taken by the hydrogen valve in FCs. In this article, a linear-quadratic regulator (LQR) is developed to control the power converter. In practical applications, the conventional LQR produces offset in output voltage due to effective series resistance (ESR) of the output capacitor. To make the LQR dynamic with load perturbation, information of inductor reference current is required, which changes with variation in load current. To solve these two problems, two modifications in the classical LQR have been proposed to minimize the impact of ESR (m-LQR) and incorporate control action based on the reference inductor current (M-LQR). The proposed methods are compared with the conventional average current-mode control technique. The M-LQR-based scheme is found to outperform the classical m-LQR technique in terms of improved transient dynamics and reduced offset at the steady state. In addition to numerical simulations, the proposed control techniques have been validated experimentally.

中文翻译:


用于燃料电池集成升压转换器的改进 LQR 技术



燃料电池(FC)是一种替代能源,其副产品是热、蒸汽和水。对于中等功率和独立运行,FC 与升压转换器集成,因为所需的电压水平高于电源。对这种具有慢速动态源的转换器的控制需要快速动作的控制器,因为控制器执行的需求会影响FC中氢气阀所采取的动作。在本文中,开发了一种线性二次调节器 (LQR) 来控制功率转换器。在实际应用中,传统的LQR由于输出电容器的有效串联电阻(ESR)而产生输出电压偏移。为了使 LQR 随负载扰动动态变化,需要电感器参考电流的信息,该信息随着负载电流的变化而变化。为了解决这两个问题,人们提出了对经典 LQR 的两种修改,以最大限度地减少 ESR (m-LQR) 的影响,并结合基于参考电感电流 (M-LQR) 的控制动作。所提出的方法与传统的平均电流模式控制技术进行了比较。研究发现,基于 M-LQR 的方案在改善瞬态动力学和减少稳态偏移方面优于经典 m-LQR 技术。除了数值模拟之外,所提出的控制技术还经过了实验验证。
更新日期:2020-06-10
down
wechat
bug