当前位置: X-MOL 学术RACSAM › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Parametric binomial sums involving harmonic numbers
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas ( IF 1.8 ) Pub Date : 2021-03-26 , DOI: 10.1007/s13398-021-01025-3
Necdet Batır

We present explicit formulas for the following family of parametric binomial sums involving harmonic numbers for \(p=0,1,2\) and \(|t|\le 1\).

$$\begin{aligned} \sum _{k=1}^{\infty }\frac{H_{k-1}t^k}{k^p\left( {\begin{array}{c}n+k\\ k\end{array}}\right) } \quad \text{ and }\quad \sum _{k=1}^{\infty }\frac{t^k}{k^p\left( {\begin{array}{c}n+k\\ k\end{array}}\right) }. \end{aligned}$$

We also generalize the following relation between the Stirling numbers of the first kind and the Riemann zeta function to polygamma function and give some applications.

$$\begin{aligned} \zeta (n+1)=\sum _{k=n}^{\infty }\frac{s(k,n)}{kk!}, \quad n=1,2,3,\ldots . \end{aligned}$$

As examples,

$$\begin{aligned} \zeta (3)=\frac{1}{7}\sum _{k=1}^{\infty }\frac{H_{k-1}4^k}{k^2\left( {\begin{array}{c}2k\\ k\end{array}}\right) }, \quad \text{ and }\quad \zeta (3)=\frac{8}{7}+\frac{1}{7}\sum _{k=1}^{\infty } \frac{H_{k-1}4^k}{k^2(2k+1)\left( {\begin{array}{c}2k\\ k\end{array}}\right) }, \end{aligned}$$

which are new series representations for the Apéry constant \(\zeta (3)\).



中文翻译:

涉及谐波数的参数二项式和

我们为以下参数二项和式系列提供了明确的公式,其中涉及\(p = 0,1,2 \)\(| t | \ le 1 \)的调和数。

$$ \ begin {aligned} \ sum _ {k = 1} ^ {\ infty} \ frac {H_ {k-1} t ^ k} {k ^ p \ left({\ begin {array} {c} n + k \\ k \ end {array}} \ right)} \ quad \ text {和} \ quad \ sum _ {k = 1} ^ {\ infty} \ frac {t ^ k} {k ^ p \ left ({\ begin {array} {c} n + k \\ k \ end {array}} \ right)}。\ end {aligned} $$

我们还将第一类斯特林数与黎曼Zeta函数之间的以下关系推广到多伽玛函数,并给出了一些应用。

$$ \ begin {aligned} \ zeta(n + 1)= \ sum _ {k = n} ^ {\ infty} \ frac {s(k,n)} {kk!},\ quad n = 1,2 ,3,\ ldots。\ end {aligned} $$

举例来说,

$$ \ begin {aligned} \ zeta(3)= \ frac {1} {7} \ sum _ {k = 1} ^ {\ infty} \ frac {H_ {k-1} 4 ^ k} {k ^ 2 \ left({\ begin {array} {c} 2k \\ k \ end {array}} \ right)},\ quad \ text {和} \ quad \ zeta(3)= \ frac {8} {7 } + \ frac {1} {7} \ sum _ {k = 1} ^ {\ infty} \ frac {H_ {k-1} 4 ^ k} {k ^ 2(2k + 1)\ left({\ begin {array} {c} 2k \\ k \ end {array}} \ right)},\ end {aligned} $$

这是Apéry常数\(\ zeta(3)\)的新系列表示。

更新日期:2021-03-26
down
wechat
bug